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ABSTRACT 

Other than measuring relative efficiency, DEA (Data Envelopment Analysis) has been 

used in a number of other ways to elaborate further on the performance of individual units or 

to ascertain how the units could become more efficient. Also researchers have developed 

methods for using DEA as a ranking model. 

We classified DEA ranking models into two categories based on whether preferences 

(weights) are given or not. When the decision maker's preferences (weights) are not given, 

the ranking criteria and corresponding ranking results of each model vary depending on the 

methods each model uses. When the decision maker's preferences (weights) are given, the 

accuracy and acceptability of the results depend on how well these given preferences are 

reflected to each weight restriction method. 

Since the ranking result from each model is determined by the characteristics each 

model has, it is important to understand these characteristics. This hopefully can help 

decision makers to make a better decision. In this dissertation, we analyze the characteristics 

of A-P (Andersen-Peterson) model and cross-efficiency evaluation in category 1, and cone-

ratio and Wong and Beasley weight restrictions in category 2. Alternative models for 

measuring overall efficiency are proposed. 

To better characterize ranking models, we define a new metric, the specialization index 

(SI), and propose using the Ak score in cross-efficiency evaluation to identify specialized 

DMUs. Also we examine the popular characterization on the 1st ranker of cross-efficiency 

evaluation and show that it is not always true. The fixed weighting nature of cross-efficiency 

evaluation is analyzed in the multiple-input, multiple-output situation analytically and 
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empirically. Biplots are proposed as a method for comparing the characteristics of model 

with multiple inputs and/or outputs visually. 

On the characteristics of cone-ratio weight restrictions, we suggest two properties (PI) 

and (P2). Property (PI) shows a way to measure the efficiency score when cone-ratio weight 

restrictions are applied under constant returns to scale with single- input, multiple-outputs. 

Based on this property, we propose some graphical explanations of other DEA issues. 

We investigate the characteristics of Wong and Beasley weight restrictions and 

compare both their theoretical implications and empirical behavior with those of cone-ratio 

weight restrictions. We show that under Wong and Beasley weight restrictions, each DMU 

takes all different weight vectors and some DMUs may have limiting efficiency score. 

Finally, we present alternative models for measuring each of overall efficiency (OE) 

with cone-ratio weight restrictions and compare with previous models using examples. 
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

Data Envelopment Analysis (DEA) is a method to determine the relative efficiencies of 

a set of organizational units such as schools, hospital departments or bank branches when 

there are multiple incommensurate inputs and outputs [8]. Measuring relative efficiencies of 

the units has been obviously the first purpose of DEA assessment to enhance various notions 

of efficiency. 

However as indicated in [7], [38], DEA can be used in a number of other ways to 

elaborate further on the performance of individual units and to ascertain how the units 

become more efficient. Some of the further uses are 1) Identifying peer groups, 2) Identifying 

efficient operating practices (or efficient strategies), 3) Target setting, 4) Monitoring 

efficiency changes over time, 5) Resource allocation, etc. The type of information derived 

from assessment of performance depends on the aim of the assessment and on the particular 

assessment method used. The applicability and practicability of DEA can be easily confirmed 

by a recent survey, which has compiled more than 1,000 previous research efforts [28]. 

Also researchers have developed methods for using DEA as a ranking model, which 

results in a recent review by Adler et al. [1]. In this dissertation, we combine the previous 

two recent reviews on DEA ranking models, Adler et al. [1] and Allen et al. [2], and classify 

DEA ranking models into two categories according to whether preferences (weights) are 

given or not. 

In fact, many DEA ranking models start with the assumption that there are no given 

preferences (criteria), which is often the case in real life applications. Since, many DEA 

ranking models have been developed mainly for overcoming the weakness of CCR (Chames, 
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Cooper and Rhodes) model [9], - i.e. producing many efficient DMUs-, and increasing the 

discriminating power of traditional CCR model using some specified methods, the ranking 

criteria and corresponding results of each model vary by the methods each model used. 

Therefore, when a decision maker makes a decision based on a certain single DEA ranking 

model without clear understanding of the characteristics of each ranking model, it may 

results in a misleading decision. For example, a decision maker can try A-P (Andersen-

Petersen) model [3] or cross-efficiency evaluation [13], [14] to make a ranking for a certain 

management decision. However, these two models often make far different ranking results 

and sometimes make similar ranking results. And these make decision makers difficult to 

have confidence in their final decisions. 

On the other hand, in case that decision maker's preferences (weights) are given, the 

accuracy and acceptability of the results depend on how well these given preferences are 

reflected to each weight restriction method. In DEA, decision maker's preferences (weights) 

on variables are often reflected as cone-ratio or Wong and Beasley [41] weight restrictions. 

The cone-ratio (C/R) weight restrictions interpret decision maker's preferences (weights) as 

relative importance of input (output) and the Wong and Beasley (W/B) weight restrictions 

interpret those as virtual proportion of each input (output) to total virtual input (output). 

However, the characteristics of W/B weight restriction have not sufficiently explored and 

there has been no attempt to compare the characteristics of W/B weight restrictions with C/R 

weight restrictions. 

And these motivate this research on the characteristics of each DEA ranking model, 

which hopefully can help decision makers to avoid misleading decisions and can provide 

more information for their decisions. 
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The rest of this chapter is organized as follows. In section 1.2, general assumptions of 

DEA and two different views on the characteristics of the CCR model are described. In 

section 1.3, we review the current discussions on the DEA ranking models. This consists of 3 

subsections such that discussions on the comparison of DEA and MCDM, classification of 

DEA ranking models and some critical views on DEA ranking models. In this section, we 

suggest the classification of DEA ranking models as of two categories. In section 1.4, we 

described that the purpose of using DEA ranking models can go beyond ranking to importing 

additional useful information. Finally, the organization of this dissertation is provided in 

section 1.5. 

1.2 The characteristics of the CCR model 

1.2.1 The general assumptions of DEA 

The practical application of DEA presents a range of procedural issues to be examined 

and resolved. Recently Dyson et al. [15] presented some of the pitfalls and protocols in 

application of DEA under the general assumptions as follows. 

(1) Homogeneity assumption 

a) The units are undertaking similar activities and producing comparable products or 

services so that common set of outputs can be defined, b) A similar range of resources 

is available to all the units, c) The units are operating in similar environments, since 

the external environment generally impacts upon the overall performance of units. 

(2) Assumptions on input / output set 

a) It covers the full range of resources used, b) It captures all activity levels and 

b) performance measures, c) The set of factors are common to all units, d) The 
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c) environmental variation has been assessed and captured if necessary 

(3) Assumptions on factor measurement 

a) The inputs and outputs are isotonic, i.e. increased input reduces efficiency, whilest 

increased output increases efficiency, b) Measurement scales of the inputs and 

outputs should conform to ratio scales 

(4) Linearity assumption 

a) The weights are the assigned values or prices of the inputs and outputs and coupled 

with the ratio scales of the factors imply linear value functions, b) However, this 

linearity may be problematic, as for some outputs, the value of additional output may 

begin to diminish. 

1.2.2 Two different views on the characteristics of CCR model 

There exist two somewhat different views on the characteristics of the CCR model and 

the following critical view (1) is directly related to DEA ranking models. We believe that it is 

necessary to research further on the characteristics of DEA ranking models to mitigate these 

critical views and to expand the availability of using DEA ranking models. 

(1) The view that indicates the problems of DEA 

Since the CCR model places no constraints on weights (except for positivity), a 

DMU (Decision Making Unit) that is superior to all other units in any single output / 

input ratio can be evaluated as technically efficient. That is, the CCR model will assign 

high weights to the inputs and outputs for which the DMU is particularly efficient and 

low weights (including zero weights) to all the other inputs or outputs. Therefore the 

CCR model results in many technically efficient DMUs especially when there are 
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relatively many input, output variables compared to the number of DMUs. 

Many researchers pointed out the problems of DEA, such as 1) it produces many 

efficient DMUs and therefore cannot discriminate between all DMUs since a DMU, 

which specializes in one task, will be evaluated as efficient, 2) if the assigned weights 

don't reflect the decision maker's preference (judgment) or are extremely biased, the 

results may not be accepted by the decision maker. 

(2) The view that asserts the flexibility in choosing weights is one of the major advantages 

of DEA. 

In much of the DEA literature, increased flexibility in choosing weights is considered to 

be one of DEA's major advantages when compared to other techniques used to measure 

efficiency. 

1.3 Review of discussions on the DEA ranking models 

1.3.1 DEA and multi-criteria decision-making (MCDM) 

DEA arises from situations where the goal is to determine the productive efficiency of a 

system or DMU by comparing how well these units convert inputs into outputs, while 

MCDM models have arisen from problems of ranking and selecting from a set of alternatives 

that have conflicting criteria [35]. Therefore the MCDM literature was entirely separate from 

DEA research until 1988, when Golany combined interactive, multiple-objective linear 

programming in DEA [1]. 

Stewart [34], [35] has compared the traditional goals of DEA and MCDM and indicated 

on the philosophical distinction between two methods such that while MCDM is generally 

concerned with the coherent elicitation of human value judgment, DEA tends to avoid 
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inserting human value judgments, aiming more at the objective data. 

On the other hand, some researchers, Doyle et al. [12], Sarkis [26] and Khouja [19], 

showed a methodological connection between DEA and MCDM with replacing the 

minimization criteria of MCDM as inputs in DEA and maximization criteria of MCDM as 

outputs in DEA. For example, Doyle et al. showed a methodological connection using an 

example, "choice between alternative sites for an electric power plant in different European 

countries", which was explained by Stewart [33] using an MCDM. 

However, it should be noted that certain researchers have argued that MCDM and DEA 

are two entirely separate approaches, which do not overlap. MCDM is generally applied to ex 

ante problem areas where data are not readily available, especially if referring to a discussion 

of future technologies, which do not yet exist. DEA, on the other hand, provides an ex post 

analysis of the past from which to learn [6]. 

1.3.2 Classification of DEA ranking models 

Most recently, Adler et al. [1] reviewed previously published DEA ranking methods by 

dividing them into six categories. 

(1) Cross-efficiency evaluation (2) A-P method (3) Methods based on benchmarking (4) 

Methods utilizing multivariate statistical techniques (5) Methods of ranking inefficient units 

(6) Methods which require the collection of additional, preferential information from relevant 

decision-makers and combine MCDM methodologies. 

Among the above 6 areas, only (6) requires subjective information, i.e., the human 

value judgment on weights. All the other 5 areas are purely based on the objective input, 

output values. Even though Adler et al. [1] mentioned methods incorporating human value 
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judgment in DEA, they focused more on the combined method with MCDM but they didn't 

fully describe another important stream of the DEA methods, which also incorporates human 

value judgments directly into DEA formulation. 

In respect to this research area, Allen et al. [2] provided a detailed review with subtitle 

that 'evolution, development and future research directions on the weight restrictions and 

value judgments in DEA'. 

Combining the above two research works [1] and [2], in this paper we classify the 

ranking methods in two categories whether it applies the given weight restrictions 

(preferences) to all DMUs or not. 

(1) Ranking methods in DEA without given weight restrictions (preferences) 

DEA ranking models in this category are still can be divided into two groups whether 

they apply common weight restrictions to all DMUs or not. Above (1) ~ (5) areas 

fall in this category. The A-P model uses different weights to each DMU. But 

cross-efficiency model is revealed to use almost common (fixed) weights by [4] and 

this research (details are described in chapter 3 and 4). 

(2) Ranking methods in DEA with given weight restrictions (preferences) 

The following three methods correspond in this category, a) direct weight restriction 

(Assurance region methods) : Type I, II and absolute weight restrictions, b) restricting 

virtual inputs and outputs (Wong and Beasley method), c) adjusting the observed 

input-output levels. 

The models in category (2) can be thought of as using the same criteria to all DMUs 

and thus the efficiency score of each DMU is measured under the same criteria. When we 

can get the information on the preferences of decision maker, these common criteria can be 
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directly made based on those preferences, however when we cannot get the information on 

those, the weights can be made according to each model's own way. 

As a ranking model, MCDM seems to use the common criteria for making the choice 

between alternatives. When we use a ranking model in the narrow sense, it would be 

reasonable to use a certain MCDM method or DEA ranking model with common weight 

restrictions since the model should reflect the preference (criteria) of one decision maker or 

the aggregated preferences of many decision makers. 

On the other hand, many other DEA ranking models have been developed mainly for 

overcoming the weakness of CCR model, - i.e. producing many efficient DMUs-, and 

increasing the discriminating power of traditional CCR model using some specified methods. 

And with this increased discrimination, each model can find the ranking by the efficiency 

score. 

1.3.3 Some critical views on the DEA ranking models 

The DEA efficiency score of each DMU is measured by maximizing the ratio of virtual 

output / virtual input, and therefore we let the variables that have minimization criteria as 

inputs and those those have maximization criteria as outputs. 

Unless we have weight restrictions on input or output variables obtained by human 

value judgments, DEA ranking methods should find another ranking criterion that can restrict 

or adjust the weights appropriately to make a full ranking. 

Methods which are classified in previous section as 1) Ranking methods in DEA 

without given weight restrictions correspond to this case, and they find the weights in each of 

its own way. For example, 
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1) The A-P model finds the weights by comparing the unit under evaluation with a linear 

combination of all other units in the sample in which the unit being evaluated is 

excluded. Therefore the efficiency score from A-P model represents the maximum 

proportional increase in inputs (decrease in outputs) preserving efficiency. 

2) The cross-efficiency model finds the weights by minimizing the summation of all the other 

DMU's virtual output subject to the following constraints, a) The summation of all the 

other DMU's virtual input is equal to 1, b) The efficiency score of all the other DMUs 

can not exceed 1 while keeping the CCR-efficiency score of DMU being evaluated. 

3) Friedman et al [17] and Sinuany-Stem et al [32] presented two ranking methods using 

canonical correlation analysis (CCA / DEA) to find a single set of weights to all DMUs 

and linear discriminant analysis (LDA) to find a score function value, given the result 

of DEA, which shows the division of DMUs into efficient and inefficient. 

However no matter which method each model uses to find weights, the applied weights 

are severely dependent on the sample data and the method to find weights. The applied 

weights on each variable under these methods might be far from the decision-maker's 

opinion in some cases and then it would be hard to be accepted. 

As indicated by Pedraja-Chaparro [22], total flexibility, which is an implicit assumption 

of the above model, has been criticized for several aspects. 

1) Factors of secondary importance may dominate a DMU' efficiency assessment or 

important factors may be all but ignored in the analysis. 

2) The implicit assumption, which allows weight flexibility in DEA, is that each DMU 

may have individual objectives and particular circumstances. However considering the 

general assumption of DEA, i.e., evaluating homogeneous DMUs using the same input 
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and output variables under the same overall objective, it may not be acceptable when 

the weights attached to each input and output variable are greatly different. 

3) Finally, a certain amount of information regarding the importance of inputs and 

outputs might be available in some cases. 

On the other hand, each method classified in previous section as 2) Ranking methods in 

DEA with given weight restrictions tries to incorporate the value judgment of the decision 

maker or expert as the applied weights to input, output variables. When the result is obtained 

based on these suggested weights, it would presumably be readily accepted by the decision 

maker. 

1.4 Considerations on the purposes of DEA ranking models 

As we described in previous section, a lot of research has been done to make a whole 

ranking among DMUs (more specifically to differentiate CCR-efficient DMUs) along with 

the critical views. However, in spite of these research efforts on DEA ranking models, we 

cannot easily find the descriptions about the purposes of DEA ranking models and their 

corresponding ranking criteria. Therefore in many DEA ranking models, we often feel 

difficulty in explaining the purpose or corresponding ranking criteria except the fact that 

using those criteria, it can make a ranking among whole DMUs. 

The fact that each DMU can have the flexibility in choosing weights in its most 

favorable light has been considered as one of the most valuable characteristics in DEA. 

Based on this flexibility, DEA tries to find the information most appropriate to each DMU 

rather than trying to find the general information among all DMUs in the sample. 

Therefore the purpose of many DEA ranking models based on this flexibility, i.e., many 
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of DEA ranking models which don't apply common weight restriction, is more often to give 

some useful information to each DMU, rather than to give general information among all 

For example in Figure 1.1, DMU I is compared with DMU H in measuring efficiency, 

but not compared with DMUs F or G. On the other hand, DMU D is compared with DMU J 

in measuring efficiency, but not compared with DMUs B or E. That is, DMU I and DMU D 

are evaluated by the different criteria. The weight multipliers of DMU I are automatically 

chosen in DEA to achieve the highest CCR efficiency score. 

DMUs. 

Output! / input 

B 

Efficient Frontier 

Rrbduction Possibility Set 

Of i i 1 1 • i 1 
— 1 2 3 4 5 6 7 

Outputl / input 

Figure 1.1 One input and two outputs case 

Therefore using DEA, the decision maker of DMU I can get the information on the 

current CCR efficiency score, peer groups, target points, frontier DMUs, etc. Decision 

makers of each DMU can get the similar information using DEA, which has been considered 
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to be the traditional purposes of using DEA as briefly explained in section 1.1.1. 

We think that the most of the controversy on DEA ranking models comes from the 

misunderstanding of the purpose of each ranking model or omission of defining the purpose 

of each ranking models. Therefore, in this thesis we define the purposes of using DEA 

ranking models as of two kinds. 

(1) (Narrow sense) To make a choice between alternatives (selection) by the given 

preference (criteria) of one decision maker or by single aggregated preference of 

many decision makers. 

(2) (Traditional sense) To find more information corresponding to the general purpose of 

DEA to each DMU. For example, a decision maker can get information on ranking, peer 

groups as well as the changes of efficiency scores of sample DMUs under each model's 

criteria, which can be reflected to the management decisions. 

In the previous section, we classified the DEA ranking models in two categories and we 

also classified the models in category (1) into two groups whether it applies the common 

criteria (common weight restrictions) to all DMUs or not. We also classified the purpose of 

using DEA ranking models as of two kinds above. The reason of this classification is to 

clarify the relationship of the purpose and the choice of DEA ranking models. In fact, the 

purpose of using DEA ranking models (even though they have the name of ranking model) 

doesn't lie solely in definition (1) or (2) above. 

Many DEA ranking models are based on rather different assumptions than those used 

for MCDM ranking models. That is, many DEA ranking models start from the assumption 

that there are no given preferences (criteria), which is often the case in real life applications, 



www.manaraa.com

13 

and therefore the ranking criteria of each model varies by the methods each model uses. Even 

though they may be criticized when using for the purpose of narrow sense such that 1) each 

DMU is evaluated by different criteria 2) since each DMU is evaluated by different criteria, 

it is problematic to make a unique ranking among all DMUs, they still can be useful for the 

purpose of traditional sense. 

On the other hand, when we have the information on preferences of one decision maker 

or the aggregated preferences of many decision makers that can be represented as common 

weighting scheme in DEA, a certain DEA ranking model can be used for the purpose of 

narrow sense (1) without the least dissatisfaction. 

Although DEA ranking models can be used for the above two purposes of (1) and (2), it 

is necessary to develop more precise weighting schemes to be accepted by many decision 

makers with satisfaction. Most importantly, the linearity assumption in DEA may be 

problematic when the preference of decision maker cannot be represented as a linear 

function. Also we cannot find much research effort on the weight restriction methods that 

focus on the relation of each input and output (AR- II). 

1.5 Organization of the dissertation 

This dissertation consists of 8 chapters. In chapter 3 and 4, we analyze characteristics of 

A-P model and cross-efficiency evaluation, which are frequently used when we don't have 

any prior relative weights of inputs and outputs. In chapter 5 and 6, we consider 

characteristics of DEA ranking models with cone-ratio and Wong and Beasley weight 

restrictions, both of which take decision maker's preferences into account. And in chapter 7, 
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we suggest alternative models for measuring overall efficiency. Finally, conclusions are 

provided in chapter 8. 

The followings are the summary of contents of each chapter. 

In chapter 2, we briefly introduce the CCR model with basic definitions, units 

invariance theorem and example as well as the weight restriction models suggested in 

previous DEA literature. 

In chapter 3, to identify the characteristics of A-P model and cross-efficiency 

evaluation, we provide empirical ranking results in both models after describing their ranking 

criteria. Then we suggest specialization index (SI) that is computed using A-P multipliers and 

Ak score that is computed using cross-efficiency matrix to identify specialized DMUs. The 

result table used to find SI score clearly shows A-P model's characteristics. Also we examine 

the primary conclusions on the 1st ranker of cross-efficiency evaluation and show these 

conclusions are not always true. 

Finally we propose using a biplot, which facilitates the comparison of characteristics of each 

model visually. 

In chapter 4, we show that cross-efficiency evaluation in effect applies almost fixed 

weights in many of multiple-input, multiple-output cases, which is done as an extension of 

previous work [4] that focused on single-input, multiple-outputs case. 

We develop an equation, which shows an efficiency score under fixed weighting scheme in 

multiple-input, multiple-output situation and analyze the difference between real cross-

efficiency scores and those under fixed weighting both analytically and empirically. 
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In chapter 5, we define a property that shows the way to measure efficiency score when 

cone-ratio weight restrictions are applied under constant returns to scale with single- input, 

multiple-outputs (or multiple-inputs, single-output) in DEA. Based on this property we 

propose some graphical explanations of other DEA issues, 1) multiple solution problem 2) 

multipliers of cross-efficiency evaluation 3) target points under cone-ratio weight 

restrictions using one-input, two-output case in DEA. 

In chapter 6, we analyze the characteristics of W/B weight restrictions theoretically and 

compare with those of C/R weight restriction empirically. We show that under W/B weight 

restriction, each DMU takes all different weight vectors and some DMUs may have limiting 

efficiency score. 

In chapter 7, we present alternative models that can measure each of overall efficiency 

(OE) with cone-ratio weight restrictions and compare with previous models using examples. 

The only difference between the proposed and CCR model is the added cost (price) vector 

constraints, which results in the DEA models with cone-ratio weight restrictions. 
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CHAPTER 2. THE CCR AND WEIGHT RESTRICTION MODELS 

IN DEA 

2.1 Introduction 

In this chapter we will begin with explaining the CCR model and the several related 

important definitions and theorems. We included the brief explanation of the weight 

restrictions and its corresponding models in DEA in the last section of this chapter. 

These can be found in many different sources. However, for clear and coherent explanations, 

much of the following framework is excerpted from recently published two textbooks by 

Cooper et al [11] and Thanassoulis [38]. 

This chapter is organized as follows. In section 2.2, the input-oriented CCR model and 

its dual form are presented. In section 2.3, the units invariance theorem is explained. In 

section 2.4, some fundamental definitions on the CCR model, i.e. production possibility set, 

CCR-efficiency (or technical efficiency), Pareto-Koopmans efficiency are presented. 

In section 2.5, the properties of input, output oriented CCR model and their relations under 

constant returns to scale are explained. In section 2.6, we suggest an example to explain most 

of above properties in CCR model. Finally in section 2.7, weight restriction models in DEA 

are suggested and explained. 

2.2 The CCR Model 

The DEA method determines a measure of the relative efficiency of each DMU in 

comparison to all of the remaining DMUs under consideration. Given the data, we can 

measure the efficiency of each DMU one at a time and hence we need n optimizations. 
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That is for each DMU j0, we formed the virtual input and output by yet unknown 

weights v. , nr [11]: 

Virtual input = v, xiy + - + vm xmjo 

Virtual output = /v, yxh + ••• + ps ysU 

We then use linear programming to determine the weights that maximize the ratio 

virtual output jSj the objective of model (2.1: CCR-Fractional Program) is to obtain 
virtual input 

weights that maximize the ratio of DMU j0 the DMU being evaluated. The constraints 

prohibit the ratio of "virtual output / virtual input" from exceeding 1 for any DMU. 

S 
£ Wrio 

( CCR-F ) Max A, 
u„v, }° m m 

/=l 

Ê M* 
subject to 

m m 
<  1 ,  j  =  1 , . .  . , n ,  (2.1) 

Z v-xv 

H r ,  v; > 0, Vr and i 

where 

yrj = amount of output r from unit j, xtj - amount of input i to unit j, 

- the weight given to output r, 

n = the number of units, 

m = the number of inputs 

v, = the weight given to input i, 

s = the number of outputs, 

Using the fractional programming theory from Chaînes and Cooper (Chames-Cooper 

transformation), the above ratio-maximizing problem is equivalently transformed to the 
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following dual pair of linear programs (2.2 : CCR-Input Oriented) and (2.3 : Dual of 2.2) 

(  C C R - I  )  M a x  h J o  =  £  
r=l 

m 
subject to Xv'x'y<, =1 (2.2) 

f=I 
s m 
Z Wn ~ Z vtx9 ~ °' j = 
r=\ i=l 

Hr, v, >0, V r and i 

(CCR-ID) Min 0, g. z J° 
n 

subject to ^ XjXtj - ^oxVo <0, / = !,.. .,m (2.3) 
y=i 

S Ay>V - y4. - °* r = 1,..J 
y=i 

Ay  >0, j = 1,. .  . , /z 

When we need to find out the slack value of each input / output variable, we have to 

solve model (2.4), which finds the solution that maximizes the sum of input excesses and 

output shortfalls while keeping 9h = • 

Max jr*,: +£*; 
/=! r=l 

n 
subject to £ Ayx.. - 0* ^ + s,~ = 0, z = 1,.. ,,m (2.4) 

y=i 

X Ay>V - JV. " = 0, r = 1,..., 5 
y=i 

A,- > 0, 5,: > 0, s; > 0, j = 1,.. 

In practice, solving model (2.3) and (2.4) sequentially is more preferable than solving 

model (2.2) directly because 1) The number of constraints in model (2.2) is n and that of 
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model (2.3) is m + s . Usually in DEA, n  is much larger than m + s  therefore from the 

computational aspect model (2.3) is preferable 2) Sometimes we want to know the values of 

each input / output slack or A, but from model (2.2) we cannot obtain those values. From the 

obtained A value, we can see the reference set for each inefficient DMU, and finding the 

reference set has been considered as one of the most important advantages using DEA. 

2.3 Units Invariance theorem 

In DEA, measured efficiencies are independent of the units of measurement used. This 

property can be stated as the following units invariance theorem [11]. 

" The optimal values of max hh = h'^ in (2.1) and (2.2) are independent of the units in 

which the inputs and outputs are measured provided those units are the same for 

every DMU ". 

In the single input and single output case, let's assume that (1) DMU A uses 3 units of input 

and produces 3 units of output thus show the ratio of (output/input) as 1 (technically 

efficient). (2) DMU B uses 5 units of input and produces 2 units of output thus show the ratio 

of (output/input) as 2 / 5 = 0.4 (technically inefficient). 

If the unit of output is changed to 10 times of previous one, then the ratio of (output/input) as 

for DMU A will be 30/3 = 10 and that of DMU B will be 20 / 5 = 4. 

However the ratio won't change, i.e. the ratio of (output/input) of DMU B / the ratio of 

(output/input) of DMU A =4/10 = 0.4. Therefore the relative efficiency of each inefficient 

DMU is not affected by the choice of different unit of measure. 
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2.4 Some fundamental definitions on CCR model [11], [38] 

(1) Production possibility set 

With the data sets in matrices X = (x;) and Y = (y7 ), production possibility set P can 

be defined as follows satisfying (A-l) through (A-4). 

P = {(x, y) |  x > XÀ, y < YX, X > 0} (2.5) 

(A-1 ) The observed activities (xy, yy ) (j = 1,---,») belong to P 

( A -2) If an activity (x, y) belongs to P, then the activity (r x, ty) belongs to P for 

any positive scalar t. This property is called the constant retums-to-scale 

assumption. 

(A-3) For an activity (x, y) in P, any semi positive activity (x, y) with x > x and 

y < y is included in P. 

(A-4) Any semi positive linear combination of activities in P belongs to P. 

(2) Definition of CCR-Efficiency, Technical Efficiency 

These two definitions on CCR-Efficiency are equivalent [11]. Definition 1 applies 

when we use model (2.2) and definition 2 refers when we use model (2.3) and (2.4). 

(Definition 1) 

1) DMU j0 is CCR-efficient if A* = 1 and there exists at least one optimal 

(v*, //"), with v' > 0 and // > 0. 

2) Otherwise, DMU j0 is CCR-inefficient. 

(Definition 2) 
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1) If an optimal solution ( 0', A*, s",s*' ) of models (2.3) and (2.4) satisfies 

0' = 1 and zero-slack (s" = 0, s"* = 0), then DMU y0 is CCR-efficient 

2) Otherwise, DMU jQ is CCR-inefficient. 

(3) Pareto-Koopmans Efficiency 

1) A DMU is fully efficient if and only if it is not possible to improve any input or 

output without worsening some other input or output. 

2) If DMU jg is CCR-efficient, then it is Pareto-Koopmans efficient. 

2.5 Input Oriented / Output Oriented models 

There are two kinds of different measures of efficiency in DEA. Depending on whether 

inputs or outputs are more controllable, different measure of efficiency are appropriate. 

One is the efficiency by input orientation and the other is that by output orientation. 

If inputs are more controllable, input orientation is appropriate, and if outputs are more 

controllable, output orientation is more appropriate. Model (2.2) ~ (2.4) corresponds to input 

orientation and the following model (2.6) -(2.7) corresponds to the output orientation [11], 

[38]. Under the constant returns to scale, both input and output oriented models produce the 

same efficiency score. However, under variable returns to scale, these two orientation may 

produce different efficiency scores. 

(CCR-O) Min hh = vtxih 
v< " i=i 
S 

subject to 2 Wn = 1 (2.6) 
r*l 
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J m 
Z Wo -Z v'xv - °' y= 1 » . . . , n  
r»l l'ai 

jUr, v, >0, V r and i 

(CCR-OD) Max 5, 
6, A y° 

H 
subject to xijg - Z V# - / = !,.. .,m (2.7) 

y=i 

"  Z V *  ^ ° »  r  =  l , . . . , s  
y=i 

> 0, y = I , . .  . ,n 

That is, 1) The technical input efficiency measure A*(/) obtained from model (2.2) and 

obtained from model (2.3) are equal 2) The technical output efficiency measure 

1 jh20) obtained from model (2.6) and 1 jd*(0) obtained from model (2.7) are equal 

3) The efficiency score obtained from above two orientation models are equal under the 

constant return to scale technology, i .e.  h '^n  = 1 jh'^0 ) ,  0JJZ )  = l/0* ( O ) .  

2.6 Example 

Table 2.1 shows the data that is from Cooper et al 's text [11] with adding 2 more 

DMUs. The input is the number of employees and the two outputs are the number of 

customers and the amount of sales at 9 branch offices. 

Table 2.1 Data of example 2.1 

Store A B C 0 E F G H I 
Employees X 1 1 1 1 1 1 1 1 1 

Customers y\ 1 2 3 4 4 5 6 3 2 

Sales y2 5 7 4 3 6 5 2 6.5 4.333 
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The number of customers per salesman has the unit =10, and sales per salesman has the unit 

= 5100,000. Figure 2.1 shows the production possibility set and the efficient frontier 

composed of DMUs B, H, E, F, and G. 

Output! / input 

Efficient Frontier 

Production Possibility Set 

O 
2 3 4 5 6 7 1 

Outputl / input 

Figure 2.1 One input and two outputs case 

Table 2.2 shows the results of example 2.1. The second column shows the CCR-

efficiency score and the third column shows the reference set of each DMUs, which can be 

obtained by solving dual form (2.3). The reference set of each inefficient DMU can be 

obtained from model (2.3) : i.e. 

for DMU A : XB =0.714, for DMU C : XE =0.5, kF = 0.2, 

for DMU D : kF =0.5, Xc = 0.25, and for DMU I : XB =0.333, kE = 0.333. 

And the slack value calculated from model (2.4) is for DMU A : s* , = 0.4286. 
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The CCR multipliers columns are showed in the following 3 cases. 

- CCR multipliers (I) : the case when example 2.1 data is used as they are. 

- CCR multipliers (H) : the case when the unit of (output 1 / input ) is changed from 

$100,000 to $10,000 (i.e. the value is changed to 10 times to previous one), then each 

DMU's multiplier value of //, is also changed to 1/10 times of those of case (I). But 

the efficiency score is the same as case (I) from units invariance theorem. 

- CCR multipliers (HI) : the case when normalizing constant is replaced from 1 to 10. In 

this case the multiplier value of //, and //, , and the efficiency scores are all changed to 

10 times of case (I). But final efficiency score is the same as before because for DMU 

A: efficiency score = 7.14/10 = 0.714. 

Table 2.2 Results of example 2.1 

DMU 

A 

B 

C 

D 

E 
F 
G 
H 

CCR 

0.714 
1 

0.700 
0.750 

1 

1 

1 

1 

Réf. 
Set 

B 

B 

E, F 
F,G 

E 

F 

G 

H 

CCR Multipliers (I) CCR Multipliers (II) CCR Multipliers (III) 

1.0 
1.0 

1.0 

1.0 

1.0 

1.0 

1.0 
1.0 

Mi Mi 
0 
0 

0.1 

0.15 
0.1 
0.1 

0.15 

0.1429 

0.1429 

0.1 
0.05 
0.1 
0.1 
0.05 

0.0625 0.125 

A Mz 

0.667 B. E 1.0 0.0625 0.125 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 
1.0 
1.0 

1.0 

0 
0 

0.01 
0.015 
0.01 

0.01 
0.015 

0.1429 

0.1429 

0.1 

0.05 
0.1 
0.1 
0.05 

0.00625 0.125 

0.00625 0.125 

10 

10 

10 

10 
10 
10 

10 
10 

10 

Mi Mi 
0 
0 
1 

1.5 
1 

1 

1.5 
0.625 
0.625 

1.429 

1.429 
1 

0.5 

1 

1 

0.5 
1.25 

1.25 

It is interesting to note that DMUs C, E and F have the same multiplier weights for//, 

and /A. DMUs A, B, H and I have larger weights on //,. DMUs D and G have larger 

weights on fix. From Figure 2-1, we can confirm above weighting scheme in DEA. 
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2.7 Weight restriction models in DEA 

Using the CCR model has the practical advantage that the user need not identify prior 

relative values of inputs and outputs. Unfortunately, the imputed input / output values in this 

manner may be problematic when the user has certain value judgments which should be 

taken into account in the assessment and those values are not accord with the imputed values 

of CCR model. Thanassoulis [38] mentioned some of the circumstances when we 

would wish to incorporate value judgment in a DEA assessment as follows. 

1) Imputed values may not accord well with prior views on the marginal rates of 

substitution and / or transformation of the factors of production. 

2) Certain inputs and outputs may have a special interdependence within the production 

process modeled. 

3) We may wish to arrive at some notion of'overall efficiency'. 

4) We may wish to discriminate between Pareto-efficient units. The restrictions on 

relative worth of inputs and outputs can help to discriminate between Pareto-efficient 

DMUs. 

The comprehensive range of weight restrictions that can be used to incorporate value 

judgments in DEA under constant returns to scale are summarized in model (2.8) [38]. 

(1) AR-I (Assurance Regions type I ) : rx ~ r4 

- Each restriction links either only input, or alternatively only output weights. 

- Use of form r, and r4 is more prevalent in practice, reflecting valid marginal rates 

of substitution as perceived by the decision maker. 

- The name Assurance Regions type I, type II are due to Thomson et al [39]. 
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(2) AR-II (Assurance Region type II ) : r$ 

- This type shows the relationships between input and output weights 

( CCR-WR) Max hh = ^ nryr % 

subject to 
/=I 
t m 
Z v.xy * °> 
r=l 

KiVi + *,>, ^ V.V2 

at< — < ft 
v,>, 

Mr 

Mr*\ 
9 r < - ± - < y r  

v, ^ 

û)(. < v,. < r,. 

Pr- Mr - 1r 

j — 1, . • ., /Z 

: rl 

' : r2 

:r3 

:  r4y  

: r5 

(AR-1) : r, ~ r4 

(AR- II) : r5 

Absolute weight 
restrictions 

(2.8) 

M r ,  v,  >0, V r and i 

(3) Absolute weights restrictions : r6 ~ r7 

- This type is introduced to prevent inputs or outputs from being over emphasized or 

ignored in the analysis 

- However these absolute bounds are dependent on the normalization constant, and 

may not maximize the relative efficiency of assessed DMU. The side effects of this 

absolute weight restriction are recently proposed in detail by Podinovski [23]. 
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CHAPTER 3. A-P MODEL AND CROSS-EFFICIENCY EVALUATION 

3.1 Introduction 

As we described in chapter 1, unless we have weight restrictions on input or output 

variables obtained by human value judgments, DEA ranking methods must find ranking 

criteria that can restrict or adjust the weights appropriately to make a full ranking. In fact, 

many DEA ranking models start from the assumption that there are no given preferences 

(criteria), which are often the cases in real Ufe applications, and therefore the ranking criteria 

of each model vary by the method each model used. 

Among the DEA ranking models that try to make a ranking without given weight 

restriction, Andersen - Petersen model (A-P model) [3] and the cross-evaluation model [13] 

have been the most frequently used models in the DEA literature. However each model often 

makes far different ranking results in many applications. This motivates research on the 

characteristics of each model, which hopefully can help decision makers to make a better 

decision. 

On characteristics of the 1st ranker of each model, several points emerge from previous 

DEA literature. First, the 1st ranker in A-P may be a specialized DMU. This has been 

considered as one of the important problematic areas of A-P model. However, no way to 

identify specialized DMU has been suggested except deciding by A-P multipliers. Second, 

the 1st ranker in cross-efficiency evaluation is considered as a "winner with many 

competitors", the least maverick in the sample (i.e. all-round performer). Doyle et al [13], 

[14] suggested these characteristics, which supported this model to be used as a popular tool 

in many DEA applications. To show characteristics of each model, in this chapter we provide 
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empirical ranking results in both models after describe their ranking criteria. Then we suggest 

specialization index (SI) in A-P model and Ak score in cross-efficiency evaluation to identify 

specialized DMU. Also we examine the above conclusions on the 1st ranker of cross-

efficiency evaluation and show these primary conclusions are not always true. Finally we 

suggest using a biplot, which facilitates the comparison of characteristics of each model 

visually. Based on the fact that cross-efficiency evaluation uses almost fixed weights in many 

of multiple-input, multiple-output cases, we can represent the weight direction of cross-

efficiency evaluation in the biplot. 

The rest of this chapter is organized as follows. In section 3.2, two sets of application 

data are introduced. In section 3.3, each model's ranking criteria, performing procedure and 

the important characteristics shown in previous literature are presented. 

In section 3.4, we suggest specialization index (SI), which enables the identification of 

specialized DMUs in A-P model. The result table used to find SI clearly shows A-P model's 

characteristics. Also in section 3.5, the primal claims on the characteristics of 1st ranker in 

cross-efficiency evaluation are examined and the Ak score is suggested as a replacement of 

Maverick index. Empirical results are used to compare the 1st ranker in cross-evaluation with 

that under restriction of equal input, output weights along with the explanation of simple case 

in which cross-efficiency makes unexpected ranking result. 

In section 3.6, we describe how to develop biplots. Finally, conclusions are provided in 

section 3.7. 
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3.2 Application examples 

In this dissertation, we will mostly use the following two application examples (1) and 

(2) to illustrate the results, 1) Performance evaluation of FMS (Flexible Manufacturing 

System) in [29] 2) Car selection problem in [20], [24]. Some other data found in [12], [21], 

[26], [42] are also used to verify the results in each chapter. The data of FMS [29] and Car 

selection problem [20], [24] are shown in Table A.l in Appendix. 

(1) Performance evaluation of FMS (Two inputs, four outputs, 12 DMUs) 

- Input 1 includes the annual operating and depreciation costs, which are measured in 

units of one hundred thousand dollars. Input 2 is the floor space requirements of each 

specific system, which are measured in thousands of square feet. 

- Output 1 is the qualitative benefits, which is measured as a percentage, Output 2 is the 

WIP which is measured in units of 10, Output 3 is the average number of tardy jobs, 

which is measured in percentages, Output 4 is the average yield, which are measured in 

units of 100 

They demonstrated that all the output measures could be derived by computing the 

performance of the respective system against that of the existing system. Therefore the output 

2 and 3, output improvements are measured by the amount that can be reduced by the 

respective system. 

They also stated that the output measures could be obtained by AHP (Analytic 

Hierarchy Process) or simulation study, and the input measures can be obtained by 

company's accounting process. But in this paper, we will limit our attention to the 

characteristics each DEA model and thus more detailed explanation of input or output 

variable selection process in FMS is out of the scope of this dissertation. 
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(2) Car selection problem (4 inputs, 2 outputs, 28 DMUs) 

The data of car selection problem was introduced in [20], [24] to show geometrical 

representation method of multi-criteria decision problems. The 6 criteria used in that problem 

were F1 : Price (1000FF) (minimize), F2 : DIN (Deutsches Institut fur Normung ; German 

Institute for standardization) power (maximize), F3 : Fiscal power (minimize), F4 : 

Maximum speed (maximize), F5: Urban fuel consumption (minimize), F6 : 90km/h fuel 

consumption (minimize).  Mareschal [20] selected the top 10 best cars (6,3,12, 8,14, 5,1,2, 

17, 15) using one of the MCDM methods (PROMETHEE II). In this dissertation, we 

changed all of minimizing criteria as inputs and maximizing criteria as outputs to apply to 

DEA models. 

(3) Other application examples 

The other application data found in previous DEA literature we use in this dissertation 

are as follows. 1) Economic performance of Chinese cities data (2 inputs, 3 outputs, 18 

DMUs) [42], 2) Location of hydro electrical power station data (4 inputs, 2 outputs, 6 

DMUs) [12], 3) Location of solid waste management system data (5 inputs, 3 outputs, 22 

DMUs) [26], 4) Evaluating regions in Serbia data (4 inputs, 4 outputs, 30 DMUs) [21]. In 

this dissertation, we limit our focus to analyze the characteristics of DEA ranking models. All 

application data are shown in Table A. 1 in the appendix but the detailed explanation of each 

data is out of scope of this study. 

3.3 Review on the characteristics of each model 

3.3.1 A-P model 

(1) Ranking criteria 
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Andersen and Petersen (1993) [3] suggested a model that can discriminate between all 

DMUs without requiring a priori weights on inputs and outputs. The ranking criteria of the 

model can be summarized as follows. 

1) Compare the unit under evaluation with a linear combination of all other units in the 

sample, i.e. the DMU itself is excluded 

2) The score reflects the radial distance from the DMU under evaluation to the 

production frontier estimated with that DMU excluded from the sample. 

Therefore the A-P efficiency score can be interpreted as the maximum proportional 

increase in inputs preserving efficiency (or maximum proportional decrease in outputs 

preserving efficiency). 

OC' 
In Fig 3.1, A-P efficiency score of DMU C is measured by , and those of DMU B 

OB' OD' 
and D are and respectively. Therefore all of the CCR-efficient DMU's A-P 

OB OD 

efficiency scores are greater than or equal to 1. On the other hand, the A-P efficiency scores 

of CCR-inefficient DMUs are the same as their CCR efficiency score. 

* i / y  

o xi ! y 

Figure3.1 A-P model 
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(2) Performing procedure 

The A-P efficiency score explained above can be simply calculated by either of the 

following LPs (3.1) or (3.2). Program (3.1) represents the A-P model with input orientation 

and model (3.2) is the dual form of equation (3.1). The only difference with CCR-I model is 

the omission of the constraint, which belongs to the DMU being evaluated. 

( AP I ) Max hh = £ nry^ 
"r r-i 

m 
subject to £ vixih =1 (3.1) 

i-I 
s m 
Z  ^ r V r j  -  X  V ' X ' i  - °' j = l> • • ' J * Jo 
r= i /=! 

M r ,  v, - 0, V r and i 

( A P - I D )  A / w i  6 ,  
e, z ^ 

subject to X Vv " ^ °» / = l,...,m (3.2) 
y=i 
j'Jo 

n 
X  -  ° >  r  =  \ , . . . , s  
j' i 

J * j a  
Aj >o, y = i ,  

(3) The characteristics of 1st ranker from A-P model 

About the A-P model, three problematic areas have been recognized by previous 

researches [1], [3], [37], [40]. However despite these drawbacks, possibly because of the 

simplicity of the concept, many published papers in DEA research have used this approach to 

make a ranking of sample DMUs [1]. 
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The disclosed problematic areas are 

1) Since A-P takes the objective function value directly as a rank score of each DMU, 

each DMU is evaluated according to different weights [1]. 

2) The A-P model can give "specialized" DMUs an excessively high ranking [1],[3],[37]. 

3) Under certain conditions, the A-P model can yield an infeasible solutions [40]. 

Among the above three problems, the second problem has been most frequently 

indicated. The only difference between A-P and CCR model is just the omission of DMU 

that is being evaluated in the constraints. Therefore A-P model is very similar to the CCR 

model in weighting scheme that gives more emphasis on the flexibility in choosing weights 

to show technical efficiency. All of the CCR-inefficient DMUs have the same results on 

weights and efficiency score by the A-P model as those by the CCR model. 

However for the CCR-efficient DMUs, the A-P efficiency scores are decided by the 

score of second follower with respect to each weight vector. Therefore a certain DMU, which 

has a unique feature in its weighting scheme, can have a high score by A-P model. This is 

generally regarded as a problem of A-P model [1], [3], [37] such that A-P model can give 

"specialized" DMUs an excessively high ranking. 

Although the second problem was frequently mentioned in previous research, the way 

for identifying the specialized DMU has not been clearly identified. In much DEA literature, 

the possibility of specialized DMU has been explained by A-P multipliers that when a small 

number of variable weights have high values and all the others have 0 (or almost 0) weights, 

that DMU can be a specialized DMU. However in many cases, to decide a specialized DMU 

only by the assigned weights is not so clear. 

Table 3.1 shows the result of A-P efficiency scores and its multipliers on the FMS data. 
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Among the CCR efficient DMUs (1,2,4, 5,6,7 and 9), DMU 9 seems to be the most 

specialized since it has only two positive multipliers while others have at least three positive 

multipliers. However just from the multipliers in Table 3.1, we cannot make sure that which 

DMU is a specialized DMU since many DMUs also have small number of positive 

multipliers. 

Table 3.1 A-P multipliers of FMS data 

(FMS) 

Efficiency 

(A-P) 

Input weights Output weights 

(FMS) 

Efficiency 

(A-P) vi v2 Mx Mi Mi Ma 
1 1.045 0.0549 0.0132 0.0204 0.0042 0 0 
2 1.093 0 0.2222 0.0026 0 0 0.0332 
3 0.982 0.0850 0 0.0283 0 0.0162 0.0009 
4 1.134 0.0491 0.1208 0 0 0 0.0454 
5 1.159 0.0757 0.0738 0 0 0.0966 0 
6 1.028 0.2088 0 0 0 0.0671 0.0420 
7 1.060 0.1610 0 0.0509 0.0120 0.0042 0 
8 0.961 0.0758 0.0262 0.0211 0.0040 0.0118 
9 1.432 0.2725 0 0 0 0 0.0791 
10 0.953 0.0877 0.0310 0 0.0278 0 0 
11 0.983 0.0564 0 0.0206 0 0 0.0031 
12 0.801 0.0593 0.0191 0.0117 0 0.0049 0.0111 

mean 0.0989 0.0422 0.0130 0.0040 0.0172 0.0189 

3.3.2 Cross-efficiency evaluation 

(1) Ranking criteria 

Doyle and Green suggested their cross-efficiency formulations (aggressive and 

benevolent formulations) [13] in 1994 as an extension of [30] in 1986 and showed that 

aggressive and benevolent formulations are highly correlated. 

In [13], they reviewed the favorable aspects of using cross-efficiency such that 1) each 

DMU is rated not only by its weighting scheme but also other DMU's weighting scheme, 
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making it far more difficult to have ties and more likely to create a unique ordering 2) it can 

overcome the problem of selecting maverick DMU with suggesting a maverick index 3) 

Maverick index identifies the all-round best performer. 

In their subsequent paper [14], they signify the essence of the ranking criteria of cross-

efficiency as follows. 

" To get a first rank in cross-efficiency evaluation is equivalent to winning in a big race with 

many competitors. It could be said that coming second in a race where there were a thousand 

competitors must surely be better than coming first in a walkover". 

Oi/I 
Figure 3.2 The criteria of cross-efficiency evaluation 

Figure 3.2 represents their concept of cross-efficiency evaluation based on the example 

3.1 data (shown in Table 3.3), i.e.it considers DMU 1 as more ' right stuff ' than DMU 2 or 

3. Because DMU 1 is referred to be more approariate stuff with respect to the basic two 

cross-efficiency criteria, (1) being efficient and also (2) being core. Moreover in the cross-

efficiency DMUs 4,5 and 6 might be superior to DMU 2 and 3, because, in this example, the 

second criterion dominates the first criterion. 
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(2) Performing procedure 

To get the cross-efficiency score we need to perform three step calculations. 

Step 1. Find the CCR efficiency score for DMU j0 from equation (3.3) 

( CCR-I ) Max 9h = £ ̂ rJyrJ( 
Jo 

r-l 

subject to 

Zv-.y^ =1 
f=I 

Z  V r . j y r . j  -  £  V u j X i . j  ^  °' j  =  
r=1 i=l 

Ar.y > V,y ^ 0, V r / 

(3.3) 

Step 2. Find the virtual multipliers with restriction that the efficiency score for DMU j0 is set 

to the CCR efficiency score 0j from equation (3.4) 

(CEM-I) Min J Vr 
r=l X J*J o 

subject to X v-.y Z*«.y ~ 
1=1 x i* In 

£Vr. jy r . j -£v-.yx-.y so, V y*y0 
r»I i=l 

s m 

Hvr,y J o  = 0, 
r=l <=1 

(3-4) 

Mr.j, v/.y ^ 0, V r and i 

Aep J. Find the cross-efficiency score ( CEk ) of DMU k by equation (3.5) based on the 

element ( E j  k  ) of cross-efficiency matrix. 



www.manaraa.com

37 

S 

S t * 1 1 
E,*--. . = A=-Z£., (3-5) 

ZVa 
/=! 

Table 3.2 shows an example of cross-efficiency matrix for 6 DMUs. CE* is the cross 

efficiency score and can be said that averaged appraisal by peers (peer appraisal), and Ak can 

be said the averaged appraisal of peers. Ejjc is the DMU k's efficiency score when DMU 

j 's multipliers are used. Table 3.3 shows example 3.1 data and cross efficiency scores of 

each DMU. 

Table 3.2 Example of cross-efficiency matrix for 6 DMUs 

dmu 1 2 3 4 5 6 a 

1 e„ e« e,3 EU e,s EN a, 

2 e2, E22 e23 E24 e25 e2s a2 

3 e„ e32 e33 EU e35 e36 a3 

4 E41 e42 E43 EU e« E46 a4 

5 Eg, £52 E53 E54 E55 EX as 

6 e$, e62 e«3 ET* Ees Ese as 

ce* ce, ce2 CEJ ce, ce; ce, 

The performing procedure of cross-efficiency evaluation is as follows. 

1) Finding multipliers of each DMU 

For example, when we calculate the multipliers of DMU 1, we solve the following LP 

Min (11.6 +2.8 + 10.5 + 10.1 + 10.2) //, + (2.5 + 12.8 + 11.6 + 11.8 + 11.5) //2 

subject to 5v = l 

11.6//, + 2.5 //, - v < 0 

2.8//, + 12.8 //2 - y 5 0 

10.2//, +11.5 n2 - y 3 0 
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10.7 +12.0 - 1.00 v =0 

v, nx, //2 > 0 

The answer is v = 0.2, = 0.001548, p2 =0.015286 

These are multipliers that can minimize the sum of all the other DMU's virtual 

output subject to the sum of all the other DMU's virtual input is 1. 

2) Make the cross-efficiency matrix and find the cross-efficiency score 

Using these multipliers of each DMU, we can make the cross-efficiency matrix. 

For example, DMU l's cross-efficiency score will be calculated as follows. 

Table 3.3 Example 3.1 data and cross efficiency scores 

Data CEM Multiplier - Input Oriented 

DMU X y i y2  DMU CCR y, Mi M2 

1 1 10.7 12.0 1 1 0.2 0.0015 0.0153 
2 1 11.6 2.5 2 1 0.2 0.0172 0 
3 1 2.8 12.8 3 1 0.2 0 0.0156 
4 1 10.5 11.6 4 0.9799 0.2 0.0169 0.0016 
5 1 10.1 11.8 5 0.9800 0.2 0.0015 0.0153 
6 1 10.2 11.5 6 0.9579 0.2 0.0015 0.0153 

mean 0.2 0.0065 0.0105 

DMU 1 2 3 4 5 6 
1 1.000 0.281 1.000 0.968 0.980 0.958 
2 0.922 1.000 0.241 0.905 0.871 0.879 
3 0.938 0.195 1.000 0.906 0.922 0.898 
4 1.000 1.000 0.339 0.980 0.948 0.954 
5 1.000 0.281 1.000 0.968 0.980 0.958 
6 1.000 0.281 1.000 0.968 0.980 0.958 

mean 0.977 0.506 0.763 0.949 0.947 0.934 

1 = — X 
6 

"(10.7 x 0.0015) + (12 x 0.0153) , (10.7 x 0.0172) + (12 x 0) . 1 = — X 
6 1x0.2 1x0.2 

(10.7 x 0.0015) + (12 x 0.0153) 

1 x 0.2 
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=— x [ (Efficiency score using DMU l's multipliers) + (Efficiency score using 
6 

DMU 2's multipliers) + • • • + (Efficiency score using DMU 6's 

multipliers) ] 

= - (1.00 + 0.922 + 0.938 + 1.00 + 1.00+1.00) = 0.977 
6 

In the cross-efficiency matrix, the diagonal element should represent (equal) to the 

corresponding CCR efficiency score (self appraisal) of each DMU. 

(3) The characteristics of 1st ranker from cross-efficiency evaluation 

Until now, cross-efficiency evaluation has been used in many DEA applications [21], 

[26], [29] and it became one of the most popular tools in DEA research. Despite these 

research efforts, the main idea (or the characteristics of 1st ranker) on cross-efficiency 

evaluation such that it selects the all-round performer as 1st ranker, which is the least 

maverick in the sample, has not been doubted except a recent research [4], 

In [4], Anderson et al demonstrated a negative aspect of cross-efficiency such that 

"cross-efficiency in effect applies a fixed set of weights to all DMUs in single-input, multiple 

outputs situation and this may be unrealistic". 

Since in [13], they didn't rigorously define the 'all-round performer, which is also used 

in other research as 'overall performer' possible ways to understand this term include 1) all-

round performer is the best performer which obtain the highest average score by peer 

appraisal (CEk ) in the suggested cross-efficiency matrix or 2) it is also the winner with the 

most competitors as shown in Figure 3.2. 

However, they do rigorously define the Maverick index (3.6) that can identify the all-

round performers. 
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M k = { E a - e k )  I  e k ,  e k  = 1/( n  - 1 )  £ £ J t  (3.6) 

The order in Maverick index doesn't exactly correspond with that of cross-efficiency score in 

all DMUs, but in the case of CCR efficient DMUs the order is proven to be the same. That is, 

the higher cross-efficiency score of DMU j shows the smaller Maverick index it has. This 

implies that the 1st ranker in cross-evaluation is the least maverick and is the most all-round 

performer. 

3.4 Identification of specialized performer 

Since the ranking results between A-P model and cross-efficiency evaluation are often 

quite different and sometimes make the same 1st ranker, we need to identify the 

characteristics of each ranking model for decision makers to make a better decision. 

To compare the ranking results from both models, we use the Spearman coefficient of 

rank correlations. Equation (3.7) represents the Spearman coefficient of rank correlations and 

Table 3.4 reports the nonparametric statistical test of the relationship between rankings under 

A-P model and cross-efficiency evaluation. 

where, n = number of observations, di = 5, - /?, (5, is the rank of A-P, /?, is the 

rank of cross-efficiency evaluation) 

The 6 application data in previous DEA literature are used to compare the ranking 

results. That is, 1) FMS selection [29], 2) Car selection [20],[24], 3) Location of hydro 

electrical power station [12], 4) Location of solid waste management system [26], 

n 

r' '  n(n ;-l) 

6 2>,2 

1=1 (3.7) 
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5) Economic performance of Chinese cities [42], 6) Evaluating regions in Serbia [21]. 

Among these 6 data, two results (3 and 6) are appeared as rather high correlation 

rs > 0.88 but all the other results are appeared rather low correlations. 

Table 3.4 Spearman rank statistic in 6 application examples 

Applications 1 2 3 4 5 6 

r, 0.461 0.434 0.984 -0.005 0.356 0.884 

Also when we compare the upper 3 rankers in 6 examples, we can see that these two 

models often make far different ranking results. Table 3.5 shows the results of upper 3 

rankers, where n = number of DMUs, the parenthesized number under the column of rank* 

represents the rank of other model. 

Table 3.5 Comparison of ranking in 6 application examples 

Application 1 (n=12) Application 2 (n=28) Application 3 (n=6) 
DMU rank* DMU rank* DMU rank* 

A-P 1st 9 (12) 1a 1 (13) 1* 2 (6) 
2"d 5 (1) 2nd 21 (21) 2nd 5 (1) 
3rd 4 (3) 3* 25 (23) 3rd 4 (3) 

CE 1st 5 (2) 1s 6 (14) 1* 5 (2) 
2nd 1 (6) 2nd 12 (11) 2nd 6 (5) 
3rd 4 (3) 3rd 3 (10) 3* 4 (3) 

Application 4 (n=22) Application 5 (n=18) Application 6 (n=30) 
DMU rank* DMU rank DMU rank* 

A-P 1* 9 (1) Ie 2 (1) 1st 30 (6) 
2nd 3 (20) 2"d 10 (3) 2*1 9 (13) 
3rd 21 (15) 3rd 6 (2) 3rd 20 (3) 

CE 1* 9 (1) 1* 2 (1) 1st 23 (4) 
2"d 6 (20) 2"d 6 (3) 2"d 24 (7) 
3rd 8 (9) 3rd 10 (2) 3rd 20 (3) 
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For example, in the FMS example, the 1st ranker in A-P model (DMU 9) is the 12th 

ranker in cross-efficiency evaluation. Also, the 1st ranker in cross-efficiency evaluation 

(DMU 5) is the 2nd ranker in A-P model. It is interesting to see that while these two models 

often make far different ranking results, which is shown in bold number in Table 3.5, they 

sometimes make the same 1st ranker (Application 4 and 5) or similar ranking (Application 4). 

In previous section, we indicated the problematic area of the A-P model such that A-P 

model can give "specialized" DMUs an excessively high ranking. In this section, we suggest 

specialization index (SI), which enables the identification of specialized DMUs. 

Specialization index ( SIk : averaged appraisal of peers) can be defined similar to the 

way of finding ( Ak : averaged appraisal of peers) in a cross-efficiency matrix. However to 

calculate SIk, we have to use cone-ratio constraints of A-P multipliers to find each element 

Ej k in the matrix. When we use A-P multipliers directly, it may result in an infeasible 

solution for CCR efficient DMUs. 

The calculating procedure for finding SIk can be summarized as follows. 

In step 1, find each DMU's A-P multipliers, in step 2, calculate each DMU's efficiency score 

Ej k using DMU k's A-P multiplier ratios by (3.8) and in step 3, obtain SIk by averaging 

each column scores by (3.9). 

S 

Max 6 j  =  £  Mrjyr j  
r=1 

m 

subject to £ vijxij -1 

i«i 

É Mrjyr j -£  K j
x

u  -  0, j  =  (3.8) 
r=l i*l 
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y, _ vu v, _ vu 

V 2  V 2 . k  V m k  

Ml _ Mi.i Ml _ Mi.k 

Mz Mix Ms M,* 

Mr j  > vi.j * 0, Vr and i 

where, vu = DMU Ar's A-P multiplier for input i 

fir k = DMU k's A-P multiplier for output r 

SI, = - (3.9) 
n M 

Table 3.6 Results comparison of SI, A-P and cross-efficiency scores (FMS data) 

DMU 8 9 10 11 12 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1.000 0.915 1.000 0.836 0.714 0.607 0.943 1.000 0.359 0.764 1.000 1.000 
0.956 1.000 0.959 0.881 0.686 0.601 0.897 0.977 0.367 0.704 0.966 0.984 
0.919 0.606 0.982 0.752 0.862 0.774 0.925 0.949 0.422 0.904 0.924 0.953 
0.910 0.915 0.927 1.000 0.862 0.801 0.891 1.000 0.482 0.956 0.896 1.000 
0.956 0.794 1.000 0.881 1.000 0.815 0.943 1.000 0.435 1.000 0.927 1.000 
0.825 0.438 0.932 0.744 0.547 1.000 0.943 0.962 0.698 0.951 0.954 0.967 
0.897 0.459 1.000 0.748 0.628 0.973 1.000 1.000 0.643 1.000 1.000 1.000 
0.916 0.608 0.927 0.777 0.584 0.687 0.917 0.961 0.450 0.860 0.945 0.950 
0.482 0.315 0.422 0.632 0.010 0.973 0.659 0.753 1.000 0.849 0.672 0.724 
0.772 0.427 0.760 0.642 0.454 0.679 0.822 0.833 0.468 0.954 0.783 0.795 
0.956 0.665 0.977 0.719 0.625 0.590 0.923 0.951 0.355 0.714 0.983 0.953 
0.760 0.608 0.801 0.687 0.727 0.625 0.748 0.794 0.347 0.720 0.759 0.801 

SI 
rank 

0.862 0.646 0.891 0.775 0.642 0.760 0.884 0.932 0.502 0.865 0.901 0.927 
6 3 9 5 2 4 8  1 2  1  7 1 0  1 1  

CE 
rank 

0.848 0.839 0.777 0.844 0.867 0.727 0.758 0.724 0.564 0.618 0.747 0.667 
2 4 5 3 1 8 6 9 12 11 7 10 

A-P 
rank 

1.045 1.093 0.982 1.134 1.160 1.028 1.06 0.961 1.432 0.953 0.983 0.801 
6 4 8 3 2 7 5 10 1 11 8 12 

Table 3.6 shows the results of SI, A-P and cross-efficiency scores in FMS example. 

Detailed results of SI calculation in car selection example are also shown in Table A.3 in the 

appendix. 
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The SI score under the column of DMU 1 represents the average of all DMU's 

efficiency scores when they use DMU 1 's A-P multiplier ratios using (3.8) and (3.9). All the 

other DMU's SI scores are calculated in the similar manner. The high value of SIk indicates 

that many other DMUs are competitive with DMU/ s A-P weight vectors, which represents 

DMU y's weight vectors are not unusual. On the other hand, the low value of SIk indicates 

that many other DMUs are not competitive (do not favor) with DMU f s weight vector, 

which represents DMU y" s weight vectors are specialized. 

When we see the results in Table 3.6, DMU 9 (0.502) shows the smallest SI score that 

represent DMU 9 is the most specialized, which ranked 1st in SI score. Then DMU 5 (0.652), 

DMU 2 (0.646),... have specialized weights. When we see the ranking of A-P model, most 

of the specialized DMUs are assigned with high ranking but the order is not exactly the same. 

This is due to the fact that DMU y's A-P score is determined by the ratio to that of the 2nd 

follower. Therefore, even though DMU y is the most specialized in SI score, if there is the 

near 2nd follower in that weight, DMU y will typically not be ranked 1st. 

For example, A-P score of DMU 6 is measured by (1/ 0.973 = 1.028) and that of DMU 

7 is measured by (1/ 0.943=1.06). DMU 6 is more specialized than DMU 7 in 57 score, but 

DMU 6 has 2nd follower (DMU 7 :0.973) and DMU 7 has 2nd follower (DMU 1: 0.943) 

which makes DMU 7 higher ranked than DMU 6. 

Also, we can see clear examples in the results in Table A.3 in the appendix. Among the 

CCR efficient DMUs, DMU 1 (0.458), DMU 21(0.572), DMU 28 (0.575), DMU 11 (0.619) 

have the specialized weights in SI order, but the A-P ranking of DMU 28 is not high (12th) 

compared with the other DMUs. It is because DMU 28 has a nearer 2nd follower of DMU 

24(0.959) than other DMUs. 
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Table 3.7 shows the ranking comparison of A-P model and cross-evaluation with 

respect to SI scores, where rank** represents the rank of SI scores. That is, the most 

specialized DMU which has the lowest SI score is ranked 1st. 

In all 3 examples below, the upper rankers of A-P model are one of the most 

specialized DMUs. Also in two cases (application 1 and 3), the 1st ranker of cross-evaluation 

is one of the most specialized DMUs, which ranked 2nd in SI. And this contradicts the 

traditional belief on the characteristics of the 1st ranker in cross-evaluation, which is 

discussed in next section with more detail. 

Table 3.7 Comparison of A-P and cross-evaluation with respect to SI 

Application 1 (n=12) Application 2 (n=28) Application 3 (n=6) 
DMU rank*» DMU rank** DMU rank** 

A-P 1" 9 (1) 1" 1 (1) 1st 2 (1) 
2"d 5 (2) 2nd 21 (3) 2nd 5 (2) 
3rd 4 (5) 3rd 25 (7) 3rd 4 (3) 

CE 1* 5 (2) 1* 6 (13) 1st 5 (2) 
2nd 1 (6) 2nd 12 (10) 2nd 6 (5) 
3rd 4 (5) 3rd 3 (20) 3rd 4 (3) 

3.5 Identification of all-round (overall) performer 

(1) Examination of the primal claim on the 1st ranker 

In this section, we tried to identify the characteristics of cross-efficiency evaluation in 

the light of following two aspects. 

1) Is the 1st ranker in cross-evaluation always the winner with many competitors? 

2) How different are the ranking criteria of cross-efficiency evaluation (to find an all-

round performer) from applying equal input and equal output weights (to find 

a general performer defined below)? 
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5* • 

0,/I Oi/I 

Figure 3.3 The criteria of cross-efficiency evaluation 

Figure 3.3 (b) simply shows that popular conception that cross-efficiency evaluation 

selects the winner with many competitors is not always true. In both cases of Figure 3.3 (a) 

and (b), DMU 1 is the 1st ranker by cross-efficiency evaluation. However in Figure 3.3 (b), 

DMU 1 does not appear to be the winner with many competitors. Table 3.8 (a), (b) show the 

results comparison of maverick index M k and Ak score of each case of Figure 3.3 (a), (b). 

Table 3.8 Results comparison of Mk and Ak 

(a) Figure 3.3 (a) (b) Figure 3.3 (b) 

DMU 1 2 3 4 5 6 DMU 1 2 3 4 5 6 
Mk 0.029 1.453 0.397 0.039 0.043 0.031 Mk 0.029 0.438 1.214 0.372 0.392 0.400 

rank 1 6 5 3 4 2 rank 1 5 6 2 3 4 

A* 0.864 0.803 0.810 0.870 0.864 0.864 At 0.543 0.828 0.479 0.860 0.860 0.860 

In both cases, the result of Mk represents that DMU 1 is the least maverick in the 

sample but it doesn't correspond to DMU 1 's distinctiveness, which is clearly seen in Figure 

3.3 (b). In order to quantify the distinctiveness, we suggest that the SI score or Ak score from 
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the cross-efficiency matrix is more appropriate than the maverick index. From Ak score, we 

can see that DMUs 2, 3 are distinctive in case of Figure 3.3 (a) and DMUs 1, 3 are distinctive 

in case of Figure 3.3 (b). 

This fact also can be found from the result in Table 3.4, DMU 5 shows the second 

lowest SI score and thus considered as one of specialized DMUs but cross-efficiency 

evaluation ranked as 1st. Therefore, we can see that the 1st ranker is not always among the 

least specialized DMUs in the sample. 

(2) Empirical behavior 

Actually, cross-efficiency has been considered a powerful ranking scheme since it can 

make a unique ranking without any given weights. In this sense, Doyle et al [12] also 

mentioned that cross-efficiency can be a useful tool for lazy decision makers. 

On the other hand, when we don't know the weights or don't have any weight 

priorities, it is also very simple and natural idea to select a DMU as 1st ranker that would 

have the highest probability of obtaining the highest efficiency score for a randomly selected 

set of weights. This could be approximated by sampling over a grid over the entire space of 

possible weights. Since this is not practical for problems with a high number of inputs and 

outputs, an alternative approach is to evaluate each DMU using equal input weights and 

output weights. Typically the DMU that achieves the highest score using equal weights 

would tend to be well-suited for obtaining the highest rank for a wide range of weights. 

And this DMU can be found by performing CCR model with weight restrictions of both 

equal input weights and equal output weights (3.10). 

V i - V M  ( i  =  l  — m - 1 ) ,  ( r  =  l  —  s - l )  ( 3 . 1 0 )  
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Here we introduce another term "general performer" which is the 1st ranker with weight 

restrictions (3.10) to discriminate from the less rigorous "all-round performer" (overall 

performer) in cross-efficiency evaluation. 

To explain the above idea, we performed an empirical study on FMS and car selection 

problems. Each result is shown in appendix A 4 and A.5. Random weight ratios are 

repeatedly generated for FMS (vV= 20) and car selection problems (N =30) and each row in 

Table A 4 and A.5 shows the efficiency scores on these random weight ratios. The final three 

rows represent mean scores under random weights, cross-efficiency scores and results with 

restrictions (3.10). 

In the result of A.4, we can easily see that DMU 5 will have the largest average 

efficiency score and be the 1st ranker. Even though we showed the result of just 20 and 30 

iterations in each problem, the ranking results are very similar to those with weight 

restrictions (3.10). For these problems, it clearly appears that additional iterations will 

maintain a ranking result that will be exactly same with that with weight restrictions (3.10). 

In each problem, DMU 5 and 6 are the 1st rankers respectively and we call them 

"general performer" which are also the 1st rankers in cross-efficiency. Another interesting 

thing is in both cases, the rankings of cross-evaluation are similar to those with weight 

restrictions (3.10). 

We also compared the results in 4 other application problems in [21], [26], [42], [12]. 

The same 1st ranker is found in the result of 3 problems [26], [42], [12] and different 1st 

ranker was found in 1 problem [21]. Moreover, the ranking results are not much different in 

all 4 cases. Then how different is the ranking criteria of cross-efficiency with that with 

weight restrictions (3.10)? Since cross-efficiency uses almost fixed weights in many of 
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multiple-input, multiple-output cases, which will be discussed in chapter 4 in detail, the 

difference can be found in the direction of weight vectors. 

In Figure 3.3 (a) and (b), E represents the direction of weight vectors of equal weights 

and C represents the direction of weight vectors actually applied in cross-efficiency 

evaluation. The direction of cross-efficiency weight vector is changed along with changed 

DMUs. Actually, ratios of cross-efficiency multipliers of DMU j indicate the most favorable 

direction for each DMU among CCR multipliers (in the sense that it can minimize all the 

other DMU's virtual output). Since cross-efficiency evaluation averages the results of each 

DMUs in sample, the resulting directions of weight vectors are closer to those which many 

DMUs favor. In Figure 3.3 (b), the result direction of weight vectors is closer to DMU 2 by 

averaging process that gives the maverick DMU 3 a low efficiency score. 

(3) Unexpected result 

Since the final weight direction in cross-efficiency evaluation is determined by the 

averaging process of each DMU's multipliers, it is necessary to select sample DMUs 

carefully. According to the sample selection, cross-efficiency evaluation may sometimes 

yield unexpected results. 

Figure 3.4 shows the importance of sample selection in cross-efficiency evaluation. For 

simplicity, we assume that we evaluate the performance of 10 baseball players using one 

input, two outputs, i.e. number of hits ( y, ) and number of homeruns (y2) made in a year. 

Also we assume that player A was generally expected as one of the best players in that 

year since he recorded the most number of homeruns ( y2 ) with about an average number of 
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hits ( y, ). Among 10 players, we compared 3 cases with changing player A to player A' and 

A". In each case, all the other players are remained same. That is ( yx, y2 ) = A(40,60), A'(40, 

120), A"(65,60). 

yz 

120 •A' 

100 

• A" 

100 

Figure 3.4 The importance of sample selection 

£ represents the direction of weight vectors of equal weights and C, C\ C" represent the 

direction of weight vectors actually applied in cross-efficiency evaluation in each case of 

player A, A', A" respectively. By cross-efficiency evaluation, player A and A' appeared just 

an average performer (ranked 5th) since much higher weights are applied to yx than y2. Of 

course, if we applied equal weights to variables or higher weights to y2, player A and A' will 

be appeared easily the best performer. 

However player A" is appeared the 1st ranker by cross-efficiency evaluation. In this 

case, it is unnatural to consider player A" as the winner with many competitors. 
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3.6 Biplot 

We suggest a biplot of FMS data, which facilitates the comparison of characteristics of 

each model visually. The biplot is constructed from the correlations of the following 

variables. All variables are made to have maximizing criteria. 

(F„ v 3 ,  , r . )  =  A ,  -  A  Zl ,  . . .  , 21 ,  ,  A  - ,  A  (3.11)  
x, x, x, x2 x2 x2 xM xm xm 

Biplot permits the visual inspection of one DMU relative to another and the relative 

importance of each of the two variables to the position of any DMU. 

12 11 

Comp. 1 

Figure 3.5 Biplot of the FMS data 

From above variable relation (3.11) we have 8 variables in FMS example. That is, 

(•K » ^2 » '- ' > K ) = (—, —>•",—)• And the proportion of variance explained from this 
x, x, 
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biplot is 88.1% of total variance due to two principal components. The biplot in Figure 3.5 

shows well the relative position of each DMU to changed variables. 

This biplot can satisfy our interest in developing a visual picture of the relative position 

among DMUs. It is interesting to see that all of the CCR efficient DMUs (1,2,4,5,6,7,9) 

are positioned relatively at the end of each variable and all of CCR inefficient DMUs (3, 8, 

10,11, 12) are positioned near the origin of each variable. Also, the specialized DMU can be 

seen visually from the biplot. In the biplot, DMU 9 is located upper-left corner far apart from 

all the other CCR efficient DMUs (1,2,4,5,6 and 7). 

Biplot in Figure 3.6 includes another variable, which represents cross-efficiency score 

with fixed weights. That is 

( r,,  % - ,  r., W (3.12) 

where, V:, V2 • • •, Vn are the same as (3.11) 

S  

*Lyr jMr  
= CE' = ^ 

Y*XUVi i=i 

In Figure 3.6, Vn^ = V9, which represents the direction of cross-efficiency evaluation 

with fixed weights. From the biplot with additional variable, we can see more clearly that 

DMUs 5, 1,4,2,3 are positioned as higher rankers, DMUs 7, 6 are middle rankers and DMU 

9 should be the lowest ranker among CCR efficient DMUs when we use cross-evaluation. 

The applied direction of fixed weight (V9) is almost opposite of V4 that is the most 

favorable weight direction of DMU 9. And even though this biplot cannot display total 
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variance (proportion of variance is 89.1% in this case) these look to pretty well coincide with 

the calculation results. 

12 11 

Comp. 1 

Figure 3.6 Direction of the fixed weights in cross-efficiency evaluation 

3.7 Conclusions 

A-P model and cross-efficiency evaluation often makes different ranking results in 

many applications. Therefore, it is necessary to know each model's ranking characteristics to 

avoid misleading decision. 

The contributions of this chapter are as follows. 

First, we developed specialization index (SI), which enables to identify specialized DMUs in 

A-P model and proposed using Ak score as a replacement of Maverick index Mk in cross-

efficiency evaluation. Second, we showed that the primal claims on the characteristics of 1st 
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ranker in cross-efficiency evaluation are not correct. Third, we proposed a methodology for 

developing a biplot, which facilitates the visual comparison of DMUs in models with more 

than 3 inputs and outputs. Empirical studies are performed to compare the Ist ranker in cross-

evaluation with that under restriction of equal input, output weights along with the 

explanation of simple case in which cross-efficiency makes unexpected ranking result. 
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CHAPTER 4. EXTENSIONS ON THE FIXED WEIGHTING 

NATURE OF CROSS-EFFICIENCY EVALUATION 

4.1 Introduction 

In the earlier paper [4], Anderson et al. demonstrated that in a single-input, multiple-

output constant returns to scale model with input orientation, cross-efficiency evaluation in 

effect applies implicitly fixed weights to each and every DMU, which is a weighted average 

of the weights used by all of the DMUs in the sample. 

They also stated that 

1 ) The common set of weights also exists in the multiple-input, single-output constant 

returns to scale model with output orientation. 

2) The multiple-input, multiple-output models do not exhibit this fixed weighting 

phenomena because of the inability to normalize the weights. 

Based on their ideas, in this chapter we made an extension to the multiple-inputs, 

multiple-outputs constant returns to scale with input/output orientation to show that 

1) The cross-evaluations do not use the column average of cross-efficiency multipliers as 

fixed weights exactly in single-input, multiple-output case when input is not unified as 

1 and also multiple-input, multiple-output situation. 

2) Even though cross-evaluations don't use the exact fixed weights, the column average 

value of cross-efficiency multipliers can be considered as the fixed weights to each 

variable without much difference in many cases. 

3) The above difference of DMU j is caused by the DMU j' that favors far different 

weights and thus DMU j can not dominate each of DMU j' when using weight vectors 

of DMU j'. Therefore, a certain CCR-efficient DMU j, which is maverick in the 
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sample and cannot dominate many DMUs, will show rather large difference than 

CCR-efficient DMU j\ which is less maverick and can dominate many DMUs. 

The rest of this chapter is organized as follows. 

In section 4.2, fixed weighting nature of cross-efficiency evaluation in single-input, multiple-

output situation is presented. In this section, we showed the fact that when the input values of 

all DMUs are not unified 1, cross-efficiency scores are not exactly same with those under 

fixed weighting scheme. As an extension of single-input, multiple-output situation, in section 

4.3, we developed an equation, which shows an efficiency score under fixed weighting 

scheme in multiple-input, multiple-output situation. And in section 4.4, we analyzed the 

difference between real cross-efficiency score and that under fixed weighting scheme in 

multiple-input, multiple-output situation analytically and empirically. Finally, conclusions 

are provided in section 4.5. 

4.2 Single-input, Multiple outputs case 

4.2.1 The case that each DMU's input value is unified to 1 

For illustration purpose, we will begin with brief explanation of Anderson et al [4]'s 

work and example. Cross-efficiency score of DMU k is calculated as equation (4.1) 

S 

Mrjy  r jc  

m (4.1) 

I\ v u x u  

In the single-input, multiple-output case (when xu = 1 ), it becomes 
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CEk =1 
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"  zx  « i=i 
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r«l 

1 f \ 1 
I Mr. j  

n 7=1 I vi y J 
VU 

(4.2) 

As a result, the multipliers % f ÏLL 
v v u  y  

for each output yr i are independent of DMU 

A-. That is, in the following example, the weights for each output are 0.0323175, 0.05257 

respectively. And they also said that these weight results match those obtained using the 

standard column average method to four decimal places of accuracy. 

However the weights actually applied for each output in cross efficiency evaluation 

(single- input, multiple-outputs case with all input values are unified to 1) is exactly same 

Jir . 
with the value . That is column average of each output multipliers / column average of 

input multipliers. That is, by the first constraint of cross-efficiency evaluation, input-

multipliers for all DMUs should be the same and therefore the column mean of input-

multipliers is also the same with input multiplier for each DMU. 

In the single-input, multiple-output case (when xX J = 1 ), the above equation (4.2) can 

be changed to equation (4.3) as follows. 

1. By the first constraint of cross-efficiency evaluation 
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i=i 

/ \ 
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v i j  2X 
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6 — 1  
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where, fur is the average value of each output weights, 

vLy = v (for all j) is the average value of input weights. 

(4.3) 

After all, the multipliers 
/ 

M,J  
V. . j•» x '-y V 

for each output yr k can be expressed as Mj_ 
v 

which 

are independent of DMU k. We will show this by the following example 4.1. 

Table 4.1 shows an example 4.1 data (left table), CCR efficiency score (2nd column in 

right table) and cross-efficiency multipliers^ -5 th column in right table), and Table 4.2 

shows a cross-efficiency matrix and efficiency scores represented as mean in the last row. 
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Table 4.1 Example 4.1 data and cross efficiency weights 

Data CEM Multiplier - Input Oriented 

DMU % y x  y i  DMU CCR v i  Mi Mi 
1 1 10.7 12.0 1 1 0.2 0.0015 0.0153 
2 1 11.6 2.5 2 1 0.2 0.0172 0 
3 1 2.8 12.8 3 1 0.2 0 0.0156 
4 1 10.5 11.6 4 0.9799 0.2 0.0169 0.0016 
5 1 10.1 11.8 5 0.9801 0.2 0.0015 0.0153 
6 1 10.2 11.5 6 0.9579 0.2 0.0015 0.0153 

mean 0.2 0.0065 0.0105 

Table 4.2 Cross efficiency results for example 4.1 

DMU 1 2 3 4 5 6 
1 1.000 0.281 1.000 0.968 0.980 0.958 
2 0.922 1.000 0.241 0.905 0.871 0.879 
3 0.938 0.195 1.000 0.906 0.922 0.898 
4 1.000 1.000 0.339 0.980 0.948 0.954 
5 1.000 0.281 1.000 0.968 0.980 0.958 
6 1.000 0.281 1.000 0.968 0.980 0.958 

mean 0.97664 0.50631 0.76339 0.94915 0.94673 0.93419 

From the above equation (4.3), cross-efficiency scores of DMU 1 and 2 are calculated 

as follows. 

CE \ = [(Mly l l+//2 l^ l)+(M2yu+^21)+ - +(/Wu+/W2i)l 

= 6  X ~Q2 +  + ^  (^2:  +  ̂ 22  +  '  "  +  ̂ 26  ) ]  

= = [>„?,+ y„ A] - ^(y„ (0.0064635) + y„ (0.010514)) 

= yu (0.0323175) + y2l (0.052570) = 0.97664 

CE2 = — [y,2 (/Ai + Mn + •+M i6) (^21 + ̂ 22+ +1^26 )] 

= = i (>„ (0.0064635) + yn (0.010514)) 
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= yl2 (0.0323175) + yn (0.052570) = 0.50631 

As a conclusion in the case that single-input, multiple-outputs with all input values are 

equal to 1, cross-evaluation uses the fixed weights, which are exactly same as the column 

mean of the multipliers. 

4.2.2 The case that each DMU's input value is not unified to 1 

However unlike the above example, if the input variables are not unified to 1 and have 

different values then above equation (4.3) should be modified as equation (4.4). 

Because input variables are not unified to 1, the input multipliers and input values xu in the 

cross-efficiency evaluation have different values and cannot be extracted out of the bracket. 

Therefore we cannot get the fixed weights as above example and the final cross efficiency 

score also be different with above result. 

CEk = -
n 

jVr* 
r-\ 

m 

In 
,«i 

n y=i 

LMr,  jyr j c  
r=l 

In i X U 
i=i 

/ \ 

-i 

r  M 

±y«  t  
f r j  

-  V v  -i 
Mr. j  

±y«  t  -i 
r=l y»l K

Vl.jX\.k j r=1 n jTx K
v\.jx\Jk J 

(4.4) 

Table 4.3 shows an example 4.2 data (left table), CCR efficiency score (2nd column in 

right table) and cross-efficiency multipliers (3rd -5th column in right table), and Table 4.4 

shows a cross-efficiency matrix and efficiency scores as represented as mean in the second 

last row. 
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Table 4.3 Example 4.2 data and cross efficiency weights 

Data CEM Multiplier - Input Oriented 

DMU X  JVi y 2 DMU CCR v. M x  M 2 

1 1 7 7 1 1 0.0345 0.0031 0.0018 
2 5 50 10 2 1 0.0400 0.0040 0.0000 
3 5 15 45 3 1 0.0400 0.0000 0.0044 
4 8 48 48 4 0.8571 0.0455 0.0041 0.0024 
5 10 50 70 5 0.9048 0.0500 0.0024 0.0048 
6 1 5 8 6 1 0.0500 0.0024 0.0048 

mean 0.04332 0.00265 0.00304 

Table 4.4 Cross efficiency results for example 4.2 

DMU 1 2 3 4 5 6 
1 1.000 1.000 0.750 0.857 0.821 0.875 
2 0.700 1.000 0 300 0.600 0.500 0.500 
3 0.778 0.222 1.000 0.667 0.778 0.889 
4 1.000 1.000 0.750 0.857 0.821 0.875 
5 1.000 0.667 1.000 0.857 0.905 1.000 
6 1.000 0.667 1.000 0.857 0.905 1.000 

mean 0.91294 0.75925 0.79997 0.78252 0.78834 0.85645 
0.91962 0.75206 0.81538 0.78824 0.79729 0.86750 

In this case, input multipliers are not equal to each other. Therefore we cannot extract 

out the input multipliers from the bracket in equation (4.4) so that we cannot find the fixed 

weights for each output. Even though we cannot find the common fixed weights in this case, 

column means of multiplier values serve as a good indicator in this example too. 

The last row of Table 4.4 represented as CE* is calculated using the column mean as 

the fixed common weights to each variable (4.5). 

î.yr.jVr 
CE' = -=!—— (4.5) 

x, ,v 

where, v, nr are the mean values of the input and output multipliers, respectively. 

It is also interesting to note that the values from those two methods are very similar to 

each other. But the differences of result between the two methods are not the same. 
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Until this we have examined the single-input, multiple-outputs case, and from next section 

we will expand this to the multiple-inputs, multiple-outputs case to see the 

characteristics of fixed weighting nature in cross-efficiency evaluation. 

4.3 Multiple-inputs, multiple-outputs case 

Like the single-input, multiple-outputs case (if xi k is not all changed to 1), cross-

efficiency evaluation doesn't use each column mean of multiplier values as fixed weights in 

the multiple input, multiple-output case. 

However even in multiple-inputs, multiple-outputs case, when the cross-efficiency 

evaluation uses the column means as fixed weights and we calculate the efficiency score by 

equation (4.6), the result is very similar to the true result especially for the high rankers in 

cross-efficiency evaluation. 

i y ,jtr 

CE' = ^ (4.6) 

i=i 

To confirm this we will compare two equations, one is an equation of cross-efficiency 

score and the other is the equation (4.6) using the column mean of multipliers as a fixed 

weight. From the comparison of two equations and application example, we will show the 

following. 

1) The validity of using column means of multipliers as fixed weights in multiple-input, 

multiple-output cases. 

2) To find the source to make those result to be different. 

3) To examine the magnitude of differences of efficiency scores among DMUs. 
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Cross-efficiency score of DMU k with multiple-inputs, multiple-outputs is calculated 

as equation (4.7) 

CEk = -
ft I f  

y-1 

1 + y î j cMi , i  +y J J c Mxi  +-y s . *Ms .  i  
n *UVU + W2.I + *3.^3.1 + 

•VuA.2 + ^2.^2.2 + ^3.^3.2 + ''^^.2 

"^l.t^l.2 +*2.iV2.2 + -C3>V3,2 "* *" Xm.k Vm,2 

6(1) 

4(1) 

6(2) 
a(2) 

2 
rt 

y\*Mu+y i j tMu+y 3 J l f h j  +-y,^w 
+ X 2 . t V l J+Xl , t V l J+-  +  X n . i V

m J  

b( 1) | 6(2) [ 6(3) t | b(J) 

a ( l )  a i l )  a (3 )  a ( j )  

b ( j )  

a ( j )  

(4-7) 
j* 

where, —— corresponds to the first value of DMU k's column and corresponds to 
s(l) a(J) 

the last value of DMU k 's column in the cross-efficiency matrix. And similar to the single-

input, multiple-outputs case, when we assume that cross-efficiency evaluation would use 

each column mean values of multipliers as the fixed weights, cross-efficiency score of DMU 

k (4.6) can be restated by the following equation (4.8). 

CEI = 
y\.k x~C"u +-  -+M l j )+y i . k x - (M2. i  +- - - + Mij )+"- + y s , k+ — + J U s J )  

n n n 

^ U X - ( y U + " -  +  V . . y  )  +  * 2 . A  X  -  ( ^ 2 . 1  +  •  •  •  +  V 2 J  )  +  -  +  X m J c X - ( V m l  +  •  •  •  +  V m J  )  
n n n 
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yikiPx. I +M.2 +"+Vz2 +'"+th.j)+"'+ysjc(Ms.i +VSJ +—+Msj) 

XUt (VU +Vu +---+Vlj)+XU (v2.1 +Vi2 +'"+V2.y)+••+*«* (V«.I+VV2 +-"+V'«.y) 

(yuftj +'"+y»jt A1».» )++"'+y A )+•••+Cvu/^y + • • • + 

iXl.kVU +- + ̂ .*V«.,) + KtVu +-- + xmtkvm_2) + - + (xuv lJ +- + xntkvmJ) 

6(1) + 6(2) + 6(3) h— + b(J) 

a(l) + a( 2) + a(3) + •••+ a(j) 
(4.8) 

After all, it is clear from above two equation (4.7) and (4.8) that the results from those 

two methods are not same. 

CE k = - M + M + , 6(V) 
4(1) 4(2) a ( 3) a ( j )  J 

(4.7) 

CE; = 
6(1) + 6(2) + 6(3) +••• +b(J)  

a(l) +a( 2) + a(3) + •••+ a(y') 
(4.8) 

After all, equation (4.7) means the real cross-efficiency score while equation (4.8) 

calculates the efficiency score assuming each DMU to use multiplier column mean values as 

the fixed weights. 

where, a ( j )  = virtual input when we use DMU/s input multipliers 

b ( j )  = virtual output when we use DMUy's output multipliers 

For convenience, we explain two equations (4.7) and (4.8) using example 4.1 data in 

section 4.2.1. The real cross-efficiency score of DMU 1 is calculated as equation (4.7) 

CE,  = -x  
(10.7 x 0.0015) + (12 x 0.0153) (10.7 x 0.0172) + (12 x 0) 

lx  0.2  1x0.2 

(10.7 x 0.0015) + (12 x 0.0153) 

1x0.2 
= 0.97664 
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6(1) 
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= 1 x 0.2 vy 

= (10.7 X 0.0015) + (12 X 0.0153), 6(2) = (10.7 x 0.0172) + (12 x 0), • 

On the other hand, when we assume DMUs use the fixed weights as the average values 

of obtained multipliers, the efficiency score DMU k can be represented as equation (4.8), i.e. 

10.7 x 1 (0.0015 + 0.0172 + ••• + 0.0015) +12 x - (0.0153 +0 + ••• + 0.0153) 
CE' = $ G 

lx 1(0.2+0.2 +- + 0.2) 
6 

10.7 x (0.0015 + 0.0172 +••• + 0.0015) +12 x (0.0153 +0 + ••• + 0.0153) 

l x  (0 .2+0 .2  +• • •  +  0 .2 )  

_ (10.7 x 0.0015+12 x 0.0153) + (10.7 x 0.0172+12x 0) +••• +(10.7x0.0015+12x0.0153) 

( l x  0 . 2 )  +  ( 1  x  0 . 2 )  +  • • •  +  ( !  x  0 . 2 )  

6(1) + 6(2) + 6(3)+•••+6(y) 

a(l) +a(2)  + a(3) + •••+ a( j )  
= 0.97664 

When we evaluate the DMU k ,if most values of b(j)/a(J) (J = 1, -,/z) are close to 

the DMU k's CCR efficiency score b(k)/a(k), then the difference in results of above two 

equations should be very small. For example when we assume that DMU 1 's CCR efficiency 

score is 1.0, then 6(l)/a(l) = 1. If all the other values 6(2)/a(2), ••• , b(j)/a(j) are all close 

to 1, above two equation values should be very similar. 

To verify these ideas we will show the results using the application example in the next 

section. The purpose of deriving equation (4.8) is not to show that the results from two 



www.manaraa.com

66 

equations (4.7) and (4.8) is the same but to show the characteristics of differences in the 

results according to DMUs. 

4.4 The analysis of differences between two equations 

When we let DMU fr's CCR efficiency score as ck, then we can say 

60) 
= c k~  a  ;  

Srrc,~a" " •  •  « ( / >  

(For example, DMU 3's CCR efficiency score in FMS data is c3 = 0.982, 

and = ck - ax = 0.982 - a, = 0.630. Therefore a, =0.352 ) 

(4.9) 

CE'k = 

Therefore equation (4.8) becomes 

6(1)+ 6(2)+ 6(3)+-+60')' 

a(l) +a(2)  +  a(  3) + — + a( j )  

{a(l)ct - a(l)a,} + ••• + \a(j)ck - flO)ory} 

a ( l )  +  a(  2)  +  a(  3)  +  ••  •  +  a( j )  

Cj (a(l) + ••• + a{ j ) )  ~  (a(l)g, + — +aQ)eJ 

a ( l )  +  a ( 2 )  +  a ( 3 )  +  — h  a  ( J )  

a ( l )a ,  +  •• •  + f lQ)g y  
ck ~ a(l) + <z(2) + a(3) + •••+ a(y) 

(4.10) 

CEk = — 

On the other hand, equation (4.7) becomes 

i T ô a )  6 ( 2 )  6 ( 3 )  ,  6Q) 

.a ( l )  a(2)  a (3 )  a ( j )  

a ( j )  c k  -  a U) a j  a(l)ck - a(l)a1 

4(1) 40) 
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= ̂  ["Ck  "(a, + ••• + «;)]* 

a. + ••• + a. 
c* -

/z 
Ji 

Finally, when we subtract equation (4.10) from equation (4.11) 

(4.11) 

CEk - CE[ = 
-

g, + ••• + <Xj 
-

a(l)a, + ••• +a(j)aj 

a( l )  +  • • •+  a( j )  

a(l)g] + ••• +a( j )a j  ^  g(l) + •  +a( j )  

a(l) + •••+ a(J) n 

g, a(l) 1 

a(l) + • • • + a( j )  n  
+ g; «(y) l 

a(l) + ••• + a( j )  n  
(4.12) 

In the single input, multi outputs case ( jcu = 1, v, = \ jn - \  =  cons tan t  V j ) 

a(£) 
4(1) + ••• + 4(y) XUVU + ••• + xltv . M 

= 1, therefore C£t - CE\ = 0 (4-13) 

Therefore, (4.13) verifies the result of (4.3). We cannot directly know from the equation 

(4.12) that the difference of two results is small. However we can define average difference, 

maximum difference of the results from two methods as follows (4.14), (4.15). 

A = 2X=-£(C£,  -  CE, ' )  (4 .14)  
*=l ^ 4=1 

max(d k )  = max (CEk - CE\ ) (4.15) 

In this section, we will examine the above derivations using FMS example. The data 

are shown in Table A.l in the appendix and CCR efficiency scores, input / output cross 

efficiency multipliers are shown in Table 4.5. Also cross-efficiency scores for each DMU are 
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represented as CE in the Table 4.6 (second from last row), which is calculated by equation 

(4.7). Each DMU's self-efficiency score (CCR) is the corresponding diagonal elements of 

cross-efficiency matrix. 

The final row (CE*) in Table 4.6 represents the efficiency score using the equation 

(4.8). It is surprising to see that these two results are not far different in general while some 

of the DMUs have very similar scores and the others show relatively big differences. 

Table 4.5 Cross efficiency multipliers of FMS data 

(FMS) 
1 

2 
3 
4 
5 
6 

7 
8 

9 
10 

11 

12 

Efficiency 

(CCR) 
1 

1 

0.9824 
1 

1 

1 

1 

0.9614 
1 

0.9536 
0.9831 
0.8012 

Input weights 

i 
0.0024 

0 
0.0083 
0.0006 

0 
0.0078 
0.0079 
0.0070 
0.0078 
0.0069 
0.0087 
0.0072 

V-, 

0.0112 
0.0155 

0 
0.0142 
0.0153 

0 
0 

0.0024 
0 

0.0024 
0 

0.0023 

Mx 

0.0023 
0.0018 
0.0028 

0 
0 
0 
0 

0.0019 
0 
0 

0.0032 
0.0020 

Output weights 

Mi A 
0 
0 
0 
0 
0 
0 

0.0009 
0.0004 

0 
0.0022 

0 
0 

mean 0.00539 0.00527 

0 
0 

0.0016 
0.0029 
0.0048 
0.0023 
0.0015 

0 
0 
0 
0 

0.0006 

M* 
0 
0 

0.0001 
0.0012 

0 
0.0016 

0.0007 
0.0011 

0.0016 
0 

0.0005 
0.0014 

0.00117 0.00029 0.00115 0.00067 

Among 12 DMUs, 7 DMUs (1,2,4,5,6, 7, and 9) are evaluated as CCR efficient 

(58.3%). DMU 5 is the 1st ranker and DMU 9 is ranked the last. Also it is interesting to see 

that the results of CE* show very similar to CE through all DMUs while some of the DMUs 

have very close scores and the others show relatively big differences. DMU 5 (1st ranker) 

shows the smallest difference (0.0029) between CE and CE* among the CCR efficient 

DMUs, and DMU 9 (12th ranker) shows the largest difference (0.2089) between those scores. 
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When we compare the DMUs 5 and 9 in detail, 6 DMUs (1,2,6, 7, 9 and 11) are the 

cause of difference in results of DMU 5 and 9 DMUs (1,2,3,4,5,8,10,11 and 12) are the 

cause of difference in results of DMU 9. Especially we can see that DMUs 1,2, 3,4, 5 would 

cause large difference in results of DMU 9 while only DMU 9 cause large difference in 

results to DMU 5. 

Table 4.6 Cross efficiency results of FMS data 

DMU 1 2 3 4 5 6 7 8 9 10 11 12 

1 1.000 1.000 0.630 0.725 0.742 0.322 0.384 0.615 0.094 0.371 0.813 0.593 
2 0.969 1.000 0.500 0.634 0.638 0.214 0.260 0.481 0.058 0.264 0.699 0.502 
3 1.000 0.959 0.982 0.927 1.000 0.932 1.000 0.927 0.422 0.760 0.977 0.801 
4 0.957 1.000 0.758 1.000 1.000 0.434 0.482 0.610 0.190 0.418 0.703 0.732 
5 0.899 0.915 0.728 0.895 1.000 0.293 0.358 0.475 0.004 0.294 0.624 0.705 
6 0.601 0.597 0.764 0.794 0.804 1.000 0.970 0.685 1.000 0.678 0.585 0.617 
7 0.630 0.599 0.807 0.820 0.857 1.000 1.000 0.732 1.000 0.795 0.610 0.637 
8 1.000 0.977 0.949 1.000 1.000 0.962 1.000 0.961 0.753 0.833 0.951 0.794 
9 0.359 0.367 0.422 0.482 0.435 0.698 0.643 0.450 1.000 0.468 0.355 0.347 
10 0.764 0.704 0.904 0.956 1.000 0.951 1.000 0.860 0.849 0.953 0.714 0.720 
11 1.000 0.966 0.924 0.896 0.927 0.954 1.000 0.945 0.672 0.783 0.983 0.759 
12 1.000 0.985 0.953 1.000 1.000 0.968 1.000 0.950 0.724 0.796 0.953 0.801 

CE 0.848 0.839 0.777 0.844 0.867 0.727 0.758 0.724 0.564 0.618 0.747 0.667 
CE' 0.837 0.820 0.781 0.848 0.870 0.633 0.685 0.727 0.355 0.587 0.755 0.671 

The average difference by (4.14) among all DMUs is D = 0.0386. Only three DMUs 

of 6, 7 and 9 have more than average values of dk (d9 = 0.2089, d6 = 0.0947, 

d7 = 0.0731 ) and all the other DMUs have the value of dk less than average. 

The equation (4.12) can be confirmed by the following results which correspond with those 

calculated from final two rows in cross-efficiency matrix. 
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(DMU 1) g0)+ -+«(•/) = 1-82062 = 0 15172 

n 12 

fl(l)a,+-+flO')«y 0.231633 Air,M — = = 0.16353 
a(l) + •••+ a( j )  1.416456 

CEk  - CE\ = 0.163530 - 0.15172 = 0.01181 

(DMU 9) shows the largest difference among DMUs between two results. 

«C> + -" + «0> = 5233927 =0.436161 
n 12 

a(l)e, + +*(/)„, = 0.4796066 = 

fl(l) + -+a(y) 0.743540 

CEk  - CE'k  = 0.645031 - 0.436161 = 0.20887 

We tried to calculate the differences (4.14) (4.15) of 5 more cases that can be found in 

previous DEA literature and the results are shown in Table 4.7 (where, cr represents standard 

deviation of the differences). 

1. Evaluating regions in Serbia (30DMUs, 4 input 4 output variables) [21] 

2. Location of solid waste system (22 DMUs, 5 input 3 output variables) [26] 

3. Car selection problem (28 DMUs, 4 input 2 output variables) [20],[24] 

4. Economic performance of Chinese cities (18 DMUs, 2 input 3 output variables) [42] 

5. Location of hydro-electrical power station (6 DMUs, 4 input 2 output variables) [12], 

[20],[24] 

T able 4.7 Result of difference in 5 application examples 

Example 1 2 3 4 5 

D 0.030 0.010 0.043 -0.010 0.183 

dk 0.090 0.022 0.104 -0.065 0.415 

cr 0.021 0.007 0.023 0.033 0.132 
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Finally, we can see the followings in multiple input, multiple output cases from 

equation (4.12) 

1) We cannot say in general that the difference between the two equations (4.7) and (4.8) 

is very small. However we can see that for a certain DMU k, when many values of 

a j are zero or very small then the difference of the results from two equations can be 

very small otherwise it will be rather large. The difference between two equations of 

DMU j is caused by the DMU j's that favor far different weights and thus DMU j can 

not dominate each of DMU j' when using DMU j's weight vectors. 

2) Therefore, a certain CCR-efficient DMU j ,  which is maverick in the sample and 

cannot dominate many DMUs, will show rather large difference than CCR-efficient 

DMU j', which is less maverick and can dominate many DMUs. 

3) Among the 6 cases, the average differences in 5 cases are very small and only the 

result of case 5 (Location of hydro electrical power station) shows a relatively large 

difference. It is due to the fact that case 5 has very small number of DMUs compared 

to that of variables and the biplot of case 5 data shows that each DMU locates very 

sparse, which represents each DMU's favorite weight vector is far different. 

4.5 Conclusions 

In this chapter, we showed that cross-efficiency evaluation in effect applies almost 

fixed weights in many of multiple-input, multiple-output cases, which is done as an extension 

of previous work [4] that focused on single-input, multiple-outputs case. We derived an 

equation, which shows the sources to make two results (real cross-efficiency score and that 

using fixed weights) be different and provided some explanations. 
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We also performed empirical study to confirm the results that cross-efficiency 

evaluation in effect applies almost fixed weights in many of multiple-input, multiple-output 

cases. Anderson et al [2] noted that the reasonability and acceptability of this model's fixed 

weights in single-input, multiple-output case depends on the judgment of the modeler. 

Actually, the 1st ranker in cross-efficiency evaluation can be considered as best performer 

with respect to the certain weight vectors, which are obtained by averaging each DMU's 

favorable weight vectors in the sample. 
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CHAPTER 5. THE CHARACTERISTICS OF CONE-RATIO 

WEIGHT RESTRICTIONS AND SOME 

EXPLANATIONS ON OTHER DEA ISSUES 

5.1 Introduction 

In chapter 3 and 4, we analyzed the characteristics of A-P model and cross-efficiency 

evaluation, which are used in case that we don't have any prior relative weights of inputs and 

outputs. One advantage of using these models is that the user need not identify prior relative 

weights of inputs and outputs. Unfortunately, the imputed input and output values of these 

models may be problematic when the user has certain value judgments that should be taken 

into account in the assessment and those values do not coincide with the imputed values 

actually applied in these models. 

In chapter 5 and 6, we consider the characteristics of DEA ranking models with cone-

ratio (hereafter, we call C/R) and Wong and Beasley weight restrictions, both of which take 

decision maker's opinion into account each of weight restrictions. The comprehensive range 

of weight restrictions that can be used to incorporate value judgments in DEA under constant 

returns to scale are well represented in [2], [38]. C/R DEA model was first initiated by 

(Chames et al, 1990), in which assurance regions are defined by bounds on weights reflecting 

the relative importance of inputs or outputs. 

In this chapter, we suggest two properties, (PI) and (P2) on the characteristics of C/R 

weight restriction (more specifically, assurance region type I by Thompson et al [39]). And 

using property (PI), we present graphical explanations of some other DEA issues such that 1) 

multiple solution problem 2) finding cross-efficiency multipliers 3) target points under C/R 

weight restrictions. By explaining some DEA issues graphically, which are proved 
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mathematically, we can get additional intuition. We think that these explanations using 

graph, even it is limited to the 2-dimensional case, can be useful which can provide 

intuitional knowledge for further analysis in some other issues in DEA. 

The rest of this chapter is organized as follows. In section 5.2, we prove two properties 

(PI) and (P2) on the characteristics of C/R weight restrictions. Based on property (PI), we 

present graphical explanations on some other DEA issues. In section 5.3, after introducing 

theorems on classification and characterization of DMUs [10], we presented graphical 

explanation on multiple solution problems with example. Similarly in section 5.4 and section 

5.5, we suggest graphical explanations on determining cross-efficiency multipliers and target 

point under C/R weight restrictions. Finally, conclusions are provided in section 5.5. 

5.2 The characteristics of cone-ratio weight restrictions in DEA 

When we analyze the result of CCR model, most of previous DEA literatures have 

focused mainly on the value of each input and output multipliers rather than the ratio scales 

of them. In this chapter, we slightly changed our view in analyzing the result of CCR model 

like follows. That is, when we have the result of each input, output multipliers in CCR 

model, we consider that the corresponding cone-ratio weight vectors are assigned to each 

DMU j since they are most favorable. 

For example in one input, two outputs case, if the CCR result for DMU /are //,= 0.111, 

//2 = 0.111, then we consider that DMU j took the output weight vector //, I /J2 — 1.00 since it 

is most favorable rather than focusing each value itself. And we believe that this view 

enables us to have more clear interpretation on the characteristics of some DEA models when 

combined with the property (PI) below. 
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We suggest the property (PI) that shows the way to measure the efficiency when C/R 

weight restrictions are applied under constant returns to scale with one- input, multiple-

outputs (or multiple-inputs, one-output) in DEA. Let us assume the case that 1) each DMU 

uses two inputs (x,, x2 ) in order to yield a single output (y) under the condition of constant 

returns to scale 2) two inputs and one output are assumed to be all positive 3) the decision 

maker's weight (preference) for two inputs xx, x2 is given to be v, / v2 = k. 

Figu re 5.1 Iso-weight (preference) lines (planes) 

Then, in Figure 5.1, v,x, +v2x2  = k x  and v xx[  +v2x '2  = k0  are each of iso-weight 

(preference) lines for DMU B and DMU P that are parallel to each other. Also OP' 

represents an orthogonal vector to the iso-weight (preference) lines, which passes through the 

origin. It is clear from above figure that we can find the unique vector, which is 

perpendicular to the iso-weight lines and passes through the origin. And Q', R' are the 

projection points which are projected perpendicular to the vector OP' from g and B(OTR ) 
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respectively. Since Q and Q', R and R', P and P' lie on each of iso-weight (preference) 

line, these points have the same weights respectively. 

Therefore, the following relation (5.1) should be hold that is also obvious by the 

property of right-angled triangle in A OPP'. 

Efficiency score of (DMU P) : , (5.1) 
OP OP' 

OR OR' 
Similarly, in case of (DMU B) : — = . 

OB OR' 

Now we define the vector OP' as the weight vector as follows. 

(Dl) The weight vector w is a vector, which is perpendicular to the iso-weight lines 

(planes) of DMU j and passes through the origin. 

Generally if there is a DMU j ,  which uses m inputs and the weights are given by C/R 

weight restrictions among inputs, then the iso-weight plane of DMU j can be expressed as 

v,x, + ••• + vmxn = k. The equation of v,x, + • • • + vmxn = k is the general form of the 

plane equation, which intersects each of m axes with the following points, i.e. 

(*/v„ 0, 0, •••, 0), (0, k/v2 ,  0, — , 0), ••• , (0, 0, 0, •••, k/vm ) ,wd (v,, •••, vj 

represents orthogonal (directional) vector to this plane that is passing through the origin. 

Therefore we have the following definition on weight vector (D2). 

(D2) The weight vector of DMU j ,  which uses m inputs and the weights are given by C/R 

weight ratios among inputs, can be represented such as input weight vector, 

w, = (v,, • • •, vm ) and the output weight vector, wr = (//,,•••, ). 
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For simplicity, we assumed that the C/R weight for two inputs are the same for all 

DMUs in the case of Figure 5.1. Therefore we have all different iso-weight lines but parallel 

to each other to all DMUs and a unique weight vector. However in case that each DMU's 

C/R weight for each input is different, each DMU will have its own weight vector. 

After all, when the C/R weight restrictions (weight vectors) are applied to the general CCR 

model, all DMUs are projected to the weight vector along with the iso-weight lines (planes), 

and the efficiency score is measured by the following ratio (PI). 

(PI) When the C/R weight restrictions (weight vectors) are applied to the CCR model, 

efficiency score of DMU j can be measured by the following ratio. 

(single-input, multiple output or multiple-input, single output case) 

The efficiency score of DMU j = 

(Norms of orthogonal projection of DMU jto the weight -vector) 

(Norms of orthogonal projection of DMU j' to the weight vector) 

where, DMU y * has the largest norm (output maximization case) or smallest 

norm (input minimization case) when projected to the weight vector. 

(Proof) 

When cone-ratio weight restrictions are applied in single-input, multiple-output 

situation under constant returns to scale, efficiency score of DMU j0 can be represented as 

(5.2). 

S 
maximize % 

r* 1 
subject to v = 1 
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2 MrVrj - V < 0, y = 1 • • • If 

r=l 

-^ = A, , = , (5.2) 

A 

fir > 0, Vr 

And (5.2) is equivalent to (5.3) 

S 
maximize ^ 

r=l 

s 

subject to ^ u ry r j  <1, y = 1 ••• n 
rs 1 

— - , — = ^,_i , (5 3) 
Ml 

Hr ^ o, V r 

Applied cone-ratio weight ratios can be represented as the weight vector (5.4) in output 

multiplier space and all DMU's iso-preference planes are orthogonal to this weight vector. 

w r  = (Mi,  • • • ,  Mr)  (5 4) 

S 5 

Therefore, efficiency score of DMU j0  = r~ l  -  r~ l  

n 
V J max 

_ (Norms of orthogonal projection of DMU jto the weight vector) 

(Norms of orthogonal projection of DMU y* to the weight vector) 

However in multiple-input, multiple-output case, we cannot represent the efficiency of 

DMU y using 2-dimensional figure and thus we have to say that 

The efficiency score of DMU j = 

virtual output of DMU j / virtual input of DMU j 

virtual output of DMU j' / virtual input of DMU y* 
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where, DMU j* has the largest efficiency score with the same input and output 

weight vectors with DMU j respectively. 

Generally in DEA, it is admitted that C/R weight restrictions represent the decision 

maker's decision of relative importance on each variable. Also this relative importance has 

been explained as the marginal rates of substitution between inputs or between outputs [8], 

[38]. However, the fact that C/R weight restrictions in DEA in multiple-input, multiple-

output case don't imply the relation of perfect substitution among inputs (or outputs) has not 

been emphasized in previous DEA literature. 

(P2) While the C/R weight ratios among inputs (or outputs) in one-input, multiple-output 

case imply the relations of perfect substitution, it is not exactly true in multiple-

input, multiple-output case. 

(P2) can be explained by the simple counter example of two-input, two-output case. 

When output weight ratio is given as Hx/= &, a certain CCR inefficient DMU may not 

get the same efficiency score while increasing each output according to the weight ratio. That 

is, the following two cases may result in different efficiency score 

(Casel)  :  (x, ,x2) ,  (y,  +Ay,,  y2) ,(Case 2) :  (x x ,  x2 ) ,  (y, ,  y z+kAy x ) .  

We explain above properties using the following example 5.1. Table 5.1 shows the data 

set (left table) and the CCR results of each DMU (right table). The final column in Table 5.1 

shows the ratio of output multipliers of each DMU, in which we can see that only DMU 3 
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chose the ratio of output multipliers nx / /u2 as 2.00 and all the other five DMUs chose the 

ratio of 1.00. 

Table 5.1 Data and CCR results of example 5.1 

Data CCR Multipliers - Input Oriented 

DMU x yx  y2 CCR Mi Mi Pit Pi 
1 1 1.0 8.0 1 1 0.1111 0.1111 1.00 
2 1 4.0 5.0 1 1 0.1111 0.1111 1.00 
3 1 6.0 1.0 1 1 0.1538 0.0769 2.00 

4 1 1.0 7.0 0.8889 1 0.1111 0.1111 1.00 

5 1 1.5 7.0 0.9444 1 0.1111 0.1111 1.00 

6 1 1.5 6.5 0.8889 1 0.1111 0.1111 1.00 

Figure 5.2 is drawn with overlapping two planes, one is input-output variable plane 

( y i fx, y 2  / x ) = (.y,, y 2  ) and the other is corresponding multiplier plane (/z,/v, fi2/v)~ 

( NX, /i2 ) in this case. And we showed the weight vectors MI = M2, MI = 2/i, in this 

overlapped plane. 

First, when we assume that the decision maker's weight (preference) for two outputs 

are given to equal and apply this preference as C/R weight restriction fix / n2 = 1.00, then the 

efficiency score of DMU j can be measured by the suggested property. That is, 1) \E2A, 

SB, 46C, 3D represent the iso-weight (preference) lines for each DMU, where A, B, C and 

D represent the projection points of DMUs 1,5,4(6) and 3 respectively 2) Therefore, the 

efficiency score of each DMU can be measured as follows. — -1 (DMUs 1 and 2), 
OA OA 

OC OR 
0.777 (DMU3), ±—0.888 (DMUs 4 and 6) ^-=0.944(DMU 5). 
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A = Mz 

X 

Figure 5.2 One-input» two-outputs case of example 5.1 

When we think the case of DMU 6, it is clear that ( = 0.8889) from the iso-
OE OA 

weight lines and also the property of right-angled triangle (in this case A AOE ). Actually we 

can see that DMU 3 takes the weight vector //, = 2fi2 from the CCR result but here we 

assumed that all DMUs take the same weight vector n, = fi2, therefore the measured 

efficiency score for DMU 3 is = 0.777 < 1. This means that DMU 3 can be evaluated as 
OA 

technically efficient when the DMU's weight (preference) ratio on the output variables is 
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jux = lpi2. Therefore if the DMU's weight (preference) ratio is = /i2, the overall 

efficiency score of DMU 3 is less than technical efficiency score of 1. 

To confirm the above approach, we showed the calculation results on the each DMU's 

projection points and ratio of the norms of projection (i.e. efficiency score) using basic theory 

of linear algebra in appendix A-8. 

Until now, we showed the way of measuring efficiency when we have C/R weight 

restrictions in DEA. Since the C/R weight restriction allows flexible substitution, it can have 

possible drawback when the decision maker's weight (preference) on input (output) variables 

doesn't imply (or allow) the substitution among inputs or outputs at all or allow the 

substitution only in certain ranges, i.e. not allow the relation of perfect substitution. 

That is, there can be a case that even though (decision maker's) revealed relative 

importance of the two outputs is ://2) = (1:1), which means the marginal rate of 

substitution between two outputs is - 1, i.e. a 1 unit increase of output 1 would be 

compensated for by a 1 unit decrease of output 2, but it doesn't mean that it is also acceptable 

(no difference) in the following case 2 or case 3. 1) Case 1 : (output 1 : output 2) = (3 units: 

1 unit) and (1 unit : 3 units) 2) Case 2 : (output 1: output 2) = (100 units: 1 unit) and (1 unit 

: 100 units) 3) Case 3 : (output 1: output 2) = (1000 units: 1 unit) and (1 unit : 1000 units). 
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5.3 Graphical explanations on the multiple solution problems in DEA 

5.3.1 Classification and characterization of DMUs 

Ff 

NF 

NE 

O 
y 

Figure 5.3 Classification of DMU efficiencies 

Chames et al [9],[ 10] suggested on the classification and characterization of DMUs into 

6 classes shown in Figure 5.3. 

1. The set of all DMUs is partitioned into 6 classes : E, E' ,  F,  NE, NE' ,  NF.  

2. DMUs E, F are scale efficient but only DMUs E, E' are Pareto-Koopmans 

efficient. 

3. DMU E is efficient and is characterized by the property that their sets of optimizing 

multipliers are all of the maximal dimension s + m. This means that all of DMU E 

has the multiple solutions in CCR model and the sets of each multiplier are linearly 

independent with maximal dimension s + m. 
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4. DMU £' are also efficient and have at least one optimizing multiplier with all 

component positive, however they differ from £ in that their set of optimizing 

multipliers have dimension less than s + m. 

5. Both £ and £' are on the Pareto-Koopmans efficiency frontier of K. 

6. DMU F is also on the frontier K but is associated with DMU that is not efficient. 

This has no optimizing multiplier in which all components are strictly positive. 

The definition 1 of CCR-Efficiency in chapter 2 can be restated in relation to each 

DMU as follows. 

( 1 ) DMUs £ u £' are CCR efficient and there exists at least one optimal 

(v//*), with v' > 0 and //*> 0. 

The definition 2 of CCR Efficiency in chapter 2 can be restated in relation to each 

DMU as follows. 

(2) £ u £' : 2 = 1 and = 0 

F :  9 - 1  and > 0 

NE u NE' : 0 < 1 and = 0 

NF : 0 <1 and > 0 

5.3.2 Explanations on the multiple solution problems in DEA 

Chames et al's papers [9], [10] on the structure for classifying and characterizing 

efficiency and inefficiency in DEA have been a strong basis for further analysis in DEA. 

From the above explanation of each DMU's characterization, we could see that DMUs £ 

and £' may have multiple solutions based on the explanation that their sets of optimizing 
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multipliers for DMUs E and E' have all of the maximal dimension s + m and have less than 

s + m respectively. 

While they [9], [10] suggested and mathematically proved the theorems on the multiple 

solution problems in DEA, this problem has been explained more specifically (example of 

two input, one output case) using the dual form of CCR model in several papers [27], [36], 

[43] that certain DMUs can have multiple A values in their optimal solutions. It seems due to 

the fact that dual form of CCR model has far less constraints and it makes easier to perform 

simplex tableau. But we cannot get any graphical intuition on the possible multiple solutions 

using the dual form of CCR model, which makes it more difficult to understand. 

In this section, we suggest the explanation of multiple solution problems using the 

primal form of CCR model based on the property (PI). 

We use the example 5.1 data (Table 5.1) and Figure 5.4 shows the projection of DMU 1, 2 

and 3 to various weight vectors. 

(1) At first, DMU 1 has the same projection point at C (4.5,4.5) with DMU 2 when 

projected to the weight vector /ux = n2 which results in efficiency score 1 of both 

DMUs 1 and 2. However if projected to any weight vector in relation of /i, < /u2 

(we showed in Figure 5.4 the two cases of = 0.5fi2 and //, = 0.8//2 ), DMU 1 is 

the only one which has the efficiency score of 1, i.e. DMU 1 dominates all other 

DMUs. This implies that DMU 1 has multiple optimal solutions. 

(2) DMU 2 has the same projection point at H (5.2,2.6) with DMU 3 when projected to 

the weight vector = 2//2 which results in efficiency score 1 of both DMU 2 and 3. 

However if projected to any weight vectors fx2 < < 2//2 (we showed in Figure 5.4 
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the one case of //, =1.5 fi2 ), DMU 2 is the only one which has the efficiency score 

of 1, i.e. DMU 2 dominates all other DMUs. This also implies that DMU 2 also has 

multiple optimal solutions. 

y 2 

X 

fix = 0.5// 8 

7 
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5 
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0 
x 3 6 7 1 2 4 5 

Figure 5.4 The range of optimal multipliers for DMUs 1 and 2 

(3) For DMU 3, if projected to any weight vectors //, > 2/J2 (we showed in Figure 5.4 

the one case of //, = 3//, ), DMU 3 is the only one which has the efficiency score of 

1, i.e. DMU 3 dominates all other DMUs. This also implies that DMU 3 has multiple 

optimal solutions. 
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(4) If we assume that there is another DMU 3' which corresponds to fin DMU 

classification of Charnes et al [10], the only possible weight vector with which the 

efficiency score of DMU 3' is 1 is Mi = O. With any weight vector, DMU 3' cannot 

be the only one which has the efficiency score of 1. But only when it takes the weight 

vector //2 = 0, the efficiency score is 1 equal to DMU 3. This also coincides with 

the definition 1 of CCR- efficiency : DMUs £ u £' are CCR efficient and there 

exists at least one optimal ( v*, /u' ), with v' > 0 and //' > 0. 

(5) DMUs 1,2 and 3 are belong to £ in DMU classification of Chames [10] and all of 

corresponding optimal multipliers are linearly independent. Therefore their sets of 

optimizing multipliers have the maximal dimension s + m = 3. 

(6) If we assume that there is another DMU 7 shown in Fig 5.4, which belongs to £' in 

DMU classification of Chames et al [10], it can have efficiency score 1 only when 

projected to the weight vector //, = fu2. Therefore DMU 7 has the unique solution 

with relation of / / ,  = f i2 ,  and the dimension is  2 < s + m = 3.  

(7) CCR- inefficient DMUs, i.e. DMU 4,5 and 6 all belong to NE' in DMU 

classifications. They will have the unique solution like DMU 7 ( £' ) since they can 

have their maximum efficiency score only when projected to the weight vector 

Mi = Mi • Therefore the dimension is 2 < s + m = 3. 

After all DMUs 1,2 and 3 have multiple optimal solutions in their set of multipliers 

with which these DMUs can be evaluated as technically efficient (i.e. efficiency score is 1). 
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Therefore when we apply the CCR model to each DMU with any of these optimal ratios of 

multipliers with an added constraint, the efficiency score will not be changed. 

For example, DMU 1 is dominant as long as H\ < »we randomly chose an added 

constraint ji\ / Mz= 0-30. Also DMU 2 is dominant as long as /z2 < //, < 2 n2, we randomly 

chose an added constraint //, ///2 = 1.50. Similarly for DMU 3, we chose //, / ft2 = 3.00. 

Even though multipliers are changed, CCR-efficiency score is the same as before. For DMUs 

4, 5 and 6 any other ratios of multiplier weights //, / n2 = 1, cannot make higher CCR-

efficiency score than before. 

Linear programming algorithms typically are terminated when a single optimal solution 

is obtained, without fully characterizing the set of optimal solutions. Therefore, just from 

CCR result, we often cannot get sufficient information about the applicable weights on each 

DMU's input / output variable to obtain maximum technical efficiency. 

5.4 Graphical explanations on the other issues in DEA 

5.4.1 The multipliers of cross-efiiciency evaluation 

In this section we will examine how the cross-efficiency evaluation determines its 

optimal multipliers for each DMU using the example 5.1 data. 

In cross-efficiency evaluation, the objective function is to minimize the summation of 

all other DMU's virtual output with the following constraints. 1) The summation of all other 

DMU's virtual input is equal to 1 2) The efficiency score of all other DMUs cannot exceed 1 

while keeping the CCR-efficiency score of DMU being evaluated. 
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The above formulation is often explained as follows [4], " This attempts to mitigate 

multiple solutions and is a process by which for each DMU, given its initial CCR-efficiency 

score, one of the available weighting schemes is selected to itself and others " 

However we believe that even though above expression is conceptually well known, the way 

how cross-efficiency evaluation selects one optimal solution among multiple solutions has 

not been specifically shown in the previous research. 

Table 5.2 shows the cross-efficiency multipliers (left table) and scores with cross-

efficiency matrix (right table) of example 5.1 data. The ratios of output multipliers are 

changed only to CCR-efficient DMUs 1,2 and 3 and for the case of DMUs 4, 5 and 6 the 

ratios of output multipliers are not changed. DMU 2 got the highest cross-efficiency score of 

0.882. 

Table 5.2 Cross-efficiency results of example 5.1 

Cross-efficiency Multipliers Cross-efficiency Matrix 

DMU y, Mi Mi M i ' M i  DMU 1 2 3 4 5 6 
1 0.2 0 0.025 1 1.000 0.625 0.125 0.875 0.875 0.813 

2 0.2 0.0308 0.0154 2.00 2 0.769 1.000 1.000 0.692 0.769 0.731 

3 0.2 0.0333 0 3 0.167 0.667 1.000 0.167 0.250 0.250 

4 0.2 0.0222 0.0222 1.00 4 1.000 1.000 0.778 0.889 0.944 0.889 

5 0.2 0.0222 0.0222 1.00 5 1.000 1.000 0.778 0.889 0.944 0.889 

6 0.2 0.0222 0.0222 1.00 6 1.000 1.000 0.778 0.889 0.944 0.889 

mean 0.2 0.0218 0.0178 1.22 mean 0.823 0.882 0.743 0.733 0.788 0.743 

Figure 5.5 shows the projections of each DMU taken by cross-efficiency to each weight 

vector. DMU 1 preferred the weight vector //, = 0 and DMU 3 preferred /u2 = 0. It is clear 

in Figure 5.5 that with this respective projection, DMU 1 and 3 can suppress the sum of all 

the other DMU's efficiency score as much as possible. 
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In the single-input, multiple-outputs case with all inputs are unified to 1, to minimize 

the sum of all the other DMU's virtual output is equivalent to minimizing the sum of all the 

other DMU's efficiency scores. Here DMU 2 changed its weight vector from //, = (CCR) 

to H\ = 2a2 (cross-efficiency evaluation). The reason is that it is the best weight among 

CCR multiple solutions, which can suppress the sum of all the other DMU's efficiency score. 

That is, when we compare the value of sum of all the other DMU's efficiency score for DMU 

2, when projected to = 2/v2, it will be smaller than projected to //, = //2. 
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Figure 5.5 The multipliers of cross-efficiency evaluation 
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'0À\ ( OD) 

OA OA 

ocs OB 

' 3 OA J, {OA OA 

= 1 + 0.777 + 0.888 + 0.944 + 0.888 = 4.497 for //, = m 

OF\ + M +«>H\ 
OE), \OE, V 

(OF) ( OG 
+  +  .OE, OE J4  {OE, 

= 1 + I + 0.692 + 0.769 + 0.731 = 4.192 for nx = 2/i,. 

In chapter 4, we explained that cross-efficiency applies implicitly fixed weights, which 

is exactly equal to the column mean of each multiplier, to each and every DMU in a single-

input, multiple-output under constant returns to scale. In this example, the ratio of these 

weights = 1.22//, is shown in the final row in Table 5.2 and also displayed in Fig 5.5. 

However when all DMUs are projected to this weight vector, the efficiency scores of each 

DMU will not be same as those of cross-efficiency score. Because this kind of cone-ratio 

model always makes at least one efficient DMU, i.e. efficiency score is 1 (in this case DMU 

2). But the scores are changed proportionally, which still results in the same ranking. 

5.4.2 Target points under cone-ratio weight restriction 

Graphical explanation also can be provided on the target points under the cone-ratio 

weight restriction. Recently, Thanassoulis [38] suggested and proved mathematically the 

following statements on the targets under cone ratio type weight restriction. 

(1) " If we expand the output levels of DMU j0 by the factor Z* without increase any 

of its input level, DMU j0 will be rendered 100% efficient, but the resulting input-

output levels may not lie within the production possibility set where Z" is the 
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efficiency score of DMU j0  under the cone ratio type weight restriction. 

(2) " Thus, when at least one weight restriction is binding in a DEA model we cannot 

use the DEA efficiency rating as a simple scaling constant to estimate expansions of 

output levels or contractions of input levels which are feasible in principle under 

efficient operation". 

Let us assume that DMU 7, which produces 2 outputs (5,2) using 1 input (1), is added 

to the example 5.1 data. 
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Figure 5.6 Illustration of the target point of DMU 7 

The efficiency score of DMU 7 with restriction of nx = ju2 is 0.777 and is also equal to that 
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of DMU 3. Then above statements can be easily confirmed from Figure 5.6. 

(1) Because efficiency score of DMU 7 is 0.777, if we calculate the 100% efficient point 

( 7 )  b y  t h e  s a m e  w a y  a s  C C R  m o d e l  w i t h o u t  r e s t r i c t i o n ,  i t  w o u l d  b e  ( —  x  5 ,  —  x  2  )  =  
0 0 

(6.42, 2.57). Clearly this is outside the production possibility set. 

(2) It is also clear that the projection of DMUs 1, 2 and 7 to the weight vector = /J2 is 

equal to OA. Therefore, if we have to find the 100% efficiency within the production 

possibility set, efficient target of DMU 7 can only be (4, 5), which is the output 

levels of DMU 2. 

5.5 Conclusions 

In this chapter, we proved property (PI) that shows the way to measure efficiency when 

cone-ratio weight restrictions are applied under constant returns to scale with one- input, 

multiple-outputs (or multiple-inputs, one-output) in DEA. Based on this property, we 

proposed some graphical explanations of other DEA issues, 1) multiple solution problem 2) 

multipliers of cross-efficiency evaluation 3) target points under cone-ratio weight 

restrictions using one-input, two-output case in DEA. We believe that graphical explanation 

can be useful, even if it is limited in 2-dimensional case, which provides simple but 

intuitional knowledge for further analysis in many cases. 
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CHAPTER 6. THE COMPARISONS BETWEEN CONE-RATIO AND 

WONG AND BEASLEY WEIGHT RESTRICTIONS IN DEA 

6.1 Introduction 

Rather than restricting the actual weights, Wong and Beasley [41] suggested a method 

that restricts virtual inputs or outputs. (Here, we used the expression of 'restricting actual 

weights' to follow the classification of Allen [2] and Thanassoulis [38]). The method of 

restricting the actual weights indicates the models presented in section 2.7.2. (That is, 

assurance region type I, H and the absolute weight restrictions) 

They proposed that 

(1) The proportion of output r devoted to the total outputs for DMU j can be represented 

M ry .  
as ' n— and it means the 'importance' attached to output measure r by DMU j. 

Lr,^ryrj 

(2) It is because the larger this value, the more DMU j depends on output measure r in 

determining its efficiency. 

Based on the decision maker's value judgments, we can set the lower and upper limits 

for the importance of output r in DMU j and this can be expressed shown in (6.1). 

a r < J ^ — < p r  (  0  <  a  <  P  <  1  )  ( 6 . 1 )  

r=l 

Shang et al [29] showed an application using this Wong and Beasley weight restrictions 

(hereafter we call W/B weight restrictions) with weights obtained by AHP (Analytic 

Hierarchy Process). However they didn't mention why W/B weight restrictions are most 

appropriate in that case (weights obtained by AHP) and the differences between using cone-
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ratio weight restrictions. 

Also on the W/B weight restrictions Allen et al [2] indicated that 

(1) Even though restrictions on virtual input or output weights have received relatively 

little attention in DEA literature, more research is necessary to explore the pros and 

cons of setting restrictions on the virtual inputs and outputs. 

(2) Heretofore, there has been no attempt to compare methods for setting restrictions on 

the actual DEA weights with those restricting virtual inputs and / or outputs. 

Here in this study we limit our focus on the cone-ratio type weight restrictions (more 

specifically type r2and r4 in model (2.8) in section 2-7-2) among the actual weight 

restriction methods to compare with W/B weight restrictions. Therefore hereafter we 

consider the actual weight restrictions as cone-ratio (C/R) weight restrictions. 

In this chapter, we compared the characteristics between two restriction methods C/R 

and W/B in DEA. After discussing theoretical difference between two weight restriction 

methods, we compared the characteristics using simple example of one-input, two-output 

case and also compared empirically using applications of multiple-input, multiple-output 

case. 

The rest of this chapter is organized as follows. 

In section 6.2, the characteristics of W/B weight restriction are discussed theoretically based 

on single-input, multiple-output situation with example. In this section, we showed that under 

W/B weight restriction, each DMU takes all different weight vectors and some DMUs may 

have limiting efficiency score. In section 6.3, we introduced AHP to get the weights in DEA 

based on previous research by Shang et al [29] and compared the results of C/R and W/B 

weight restriction using given single data. The ranking results are appeared very similar in 
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that case. To see the practical difference between two restriction methods, in section 6.4, we 

performed empirical study using two application problem data, each of 6 random weight 

cases. The ranking results of all 12 cases are still appeared very similar. Also we showed that 

the ranking result may be far different when a certain DMU has limiting efficiency score 

under W/B weight restriction. Finally, conclusions are provided in section 6.5. 

6.2 The characteristics of W/B weight restrictions 

Based on the decision maker's value judgments, W/B weight restriction sets the lower 

and upper limits for the importance of output r of DMU j like equation (6.1). When we think 

the case of one input, two outputs (y,, y2 ) with the following W/B weight restriction (6.2), 

each DMU takes weight vectors by the relationship of (6.3). 

= o ,  ^  =  p  ( 6 . 2 )  
* + A 7: A >', + PI >': 

then Hi y l  :  / / ,  y2  = a : p  => an2  y2  = p y x  

therefore — = (6.3) 
Pyx 

Also it is true that in the multiple-input, multiple-output case, we can get all pairwise 

weight vectors among inputs and outputs like the same manner above. Therefore W/B weight 

restriction can be viewed another type of C/R weight restriction. But the main difference in 

W/B weight restriction is each DMU takes the different weight vectors under the same given 

criteria (given preferences). 

To explain the characteristics of W/B weight restriction, we use the example 5.1 data 

again and also assume the equal W/B weights (importance) on two outputs such that 

(a : P = 0.5 :0.5 ) in (6.2). Table 6.1 shows the results comparison between C/R (with 
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restriction of /ux = //, ) and W/B weight restriction (a : fi = 0.5 : 0.5) in (6.2). The columns 

under C/R and W/B represent the efficiency scores when each weight restriction is applied. 

Only DMU 2 has the same efficiency score and all the other DMUs have much lower scores 

when applied W/B restriction. 

The way for measuring efficiency score can be explained by using weight vectors in 

Figure 6.1 in a similar way as in C/R weight restriction. For example, DMU 1 takes the 

weight vector //, = 8//2, which can be seen from the last column in Table 6.1 and the 

OA 
efficiency score is measured by . The coordinates of A and C are A(1.9692, 0.2462), 

C(6.0307, 0.7538). 

tu f  OA V1.96922 + 0.24615' 1.9845 
Therefore = , = = 0.3265, which is exactly same with 

OC V6.0307692 + 0.753846' 6.0777 

the results in Table 6.1. On the other hand, DMU 2 takes the weight vector //, = 1.25/z, and 

the efficiency score is OB/OB = 1, where the coordinate of B is B(4.878,3.9024). 

Here we indicate the followings on W/B weight restriction in above example. 

1) When the C/R weight restriction is applied, all DMUs take the same weight vector 

Hi = /A and the efficiency score is measured by the ratio of norms of projections to the 

same weight vector. However when W/B weight restriction is applied, each DMU takes a 

different weight vector and the efficiency score is measured by the ratio of projection norms 

on that vector. 

2) W/B weight restriction makes pretty low efficiency scores for some DMUs. In this case, 

all DMUs except DMU 2 got much lower score than those under C/R weight restriction. 
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Table 6.1 Results comparison between C/R and W/B weight restriction 

DMU C/R Multipliers (C/R) W/B Multipliers (W/B) DMU C/R 

V, Mi Mi MJ Mi 

W/B 

v, Mi Mi Mi< Mi 

1 1 1.0 0.111 0.111 1.00 0.327 1.0 0.163 0.020 8.00 

2 1 1.0 0.111 0.111 1.00 1 1.0 0.125 0.100 1.25 

3 0.778 1.0 0.111 0.111 1.00 0.245 1.0 0.020 0.122 0.17 

4 0.889 1.0 0.111 0.111 1.00 0.326 1.0 0.163 0.023 7.00 

5 0.944 1.0 0.111 0.111 1.00 0.483 1.0 0.161 0.034 4.67 

6 0.889 1.0 0.111 0.111 1.00 0.481 1.0 0.160 0.037 4.33 
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Figure 6.1 Illustration of W/B weight restriction 

Actually, as long as there is any DMU which keeps its production of y, = 1, no matter how 
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many units of y2  are produced it can not beat DMU 5 in its efficiency score (0.483) under 

W/B weight restriction (a : /? = 0.5 : 0.5) in (6.2). 

For example, if we imagine DMU 7, which produces two outputs (y,,y2) = (l» 00 )> 

efficiency score under W/B weight restriction will be 0.333, which is still lower than that of 

DMU 5. 

3) Another issue is that we can't even use or define W/B restrictions if any of inputs or 

outputs is zero. 

4) When we use W/B weight restriction we need to add the constraints (6.1). The number of 

constraints is 2 x (m + s) corresponding to upper and lower limits of each input and output 

variable. Therefore we need to change the constraints {2 x (m + s)}x j times to calculate 

all DMU's efficiency scores. 

5) While C/R weight restriction allows flexible substitution among inputs or outputs, W/B 

weight restriction would not allow sufficient substitution (inflexible). Therefore, in order to 

reflect the decision maker's preferences more precisely, we have to know the decision 

maker's preferences more clearly and then decide which restriction method is more 

appropriate. Another example to show the difference between C/R and W/B weight 

restriction is suggested in appendix A.9. 

6.3 Using AHP (Analytic Hierarchy Process) to get the weights in DEA 

AHP [25] is designed for subjective evaluation of a set of alternatives based on multiple 

criteria, organized in a hierarchical structure. The purpose of AHP is to provide a vector of 

weights expressing the relative importance of several elements (units). AHP can be used to 
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reflect judgments on feelings, ideas, and emotions. The output of the AHP is a prioritized 

ranking, indicating the overall preference for each decision alternative. 

Shang et al [29] introduced an application (Performance evaluation of FMS) using W/B 

weight restrictions with weights obtained by AHP. hi [29], the AHP weights (upper and 

lower bound) of each input and output was decided by pairwise comparison of relative 

importance such that 1) output improvement from each input, 2) input needed to improve 

each output. 

They focused on using W/B weight restriction based on the following property (6.6) of 

AHP without mentioning the availability of C/R weight restriction. However, just from the 

decision criteria 'pairwise comparison of relative importance' and the property (6.6), we 

cannot clearly say that W/B weight restriction is more appropriate than C/R weight 

restriction, since C/R weight restriction can also satisfy both of above. 

The purpose of this section does not he on the detailed description of AHP but to show 

an alternative way of C/R weight restriction and compare the results using weights obtained 

by AHP. Therefore we have to make clear that a detailed description of AHP theory and 

FMS selection are out of scope of thesis and much of explanations on AHP and 

corresponding data of FMS evaluation are followed to Shang et al [29]. 

For illustration purpose, we begin with brief explanation of AHP procedure 

Step 1. From a decision maker's pairwise comparison between the i* and j* inputs, the 

quantified judgment of the pair is recorded as numerical entries ay in a matrix (A) 

Step 2. The AHP changes the information of A into a weight vector 

W = (w,, w2, • • •, wm )T representing the importance or contribution of each input 
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in relation to the improvement of each output. The z* component of w i  of W is 

determined in a manner that it satisfies ur/wj =a~ in A. That is 

A = 

1 ai: 

a2l  1 

aml aml 

Im 

°2m 

1 a I2  

V",2 1 

V",„ I/o 2m 

lm 

2m 

•un y 

W, W, r l 

w, 
W, 

W, 

!_ 

W2 

W, 
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vw .  W, 
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2îl 

w_ 

w 
HI J 

and with the two unique properties (6.4) and (6.5) 

AW = mW 

E>- =1  

(6.4) 

(6.5) 

Shang et al [29] consider that w ean be substituted for w, = v/x< > because of 

the following properties (6.6). 

(a) Ew' = £ 
i=i 

vixi 
V" v.x. 

/v™ v,.x,./ > .. v.x. 
= 1, (b) , ,=^L= =TT 

ViXi! L*j=\Vixi % 
(6.6) 

However more strictly speaking, each vv obtained from AHP can be substituted for 

W/B weight restriction when the weights in AHP are obtained by decision makers based on 

the relation wz = vixi. On the other hand, if the weights in AHP are obtained by 

decision makers based on the different relation, i.e. w, = vj , we have to use C/R 

weight restriction instead of W/B weight restriction. 

Therefore, we consider the case that the weights in AHP are obtained based on the 

relation w i  = vj v i. In this case, w ean be substituted for w(. = vj i  v i, with 
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restating the above two properties as (6.7) 

(a) 2W. =£ 
1=1 i=i 

( \ 
V; 

/r,|« 
. . . a . ,  = 1 (b) a, = -i- g • = -L (6.7) 

"j/'L'.Si v> 

According to the change of w,., the upper and lower bound constraints of each input 

and output can also be changed like (6.8). 

(a) ^-< 21 = ^L <£L (b) = (6.8) 
u c v* w.. Lr U T> fir' wr. L, 

In the following, we assume that weight results in [29] are obtained based on the 

relation w(. = vj v. satisfying property (6.9). And we showed the results, which are 

rearranged according to the upper and lower limits. 

w* = (0.4023, 0.0795, 0.1392, 0.2766), Wr = (0.4667, 0.1361, 0.1850, 0.3146) 

wf = (0.75, 0.1667), uf =(0.8333, 0.25) 

The ratio constraints for applying C/R weight restriction can be made by the following 

manner. For example, the ratio of weights between fi\ and //2 is 

04023 < 04667 ^ 2.9559 <^-< 5.8704 
0.1361 Hi 0.0795 Hi 

All the other ratios among inputs and among outputs can be found as the same way. 

Table 6.2 shows the results comparison of two methods. 

The CCR model evaluates 7 DMUs as efficient among 12 DMUs, but either method 

evaluates only DMUs 5 and 7 as efficient, and also we cannot find much difference in the 

ranking order between two methods. However when W/B weight restriction is applied, all 

DMU's efficiency scores except DMUs 1 and 2 are appeared slightly lower than those under 
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C/R weight restriction. 

Table 6.2 Results comparison of C/R and W/B in FMS data 

DMU CCR Rank C/R Rank W/B Rank 

1 1 - 0.9734 (5) 0.9750 (4) 

2 1 - 0.9504 (6) 0.9714 (5) 

3 0.9823 (9) 0.9485 (7) 0.9398 (7) 

4 1 - 0.9953 (3) 0.9886 (3) 

5 1 - 1 (1) 1 (1) 

6 1 - 0.9795 (4) 0.9605 (6) 

7 1 - 1 (1) 1 (1) 

8 0.9614 (10) 0.9384 (8) 0.8952 (8) 

9 1 - 0.8343 (10) 0.1148 (12) 

10 0.9535 (11) 0.8303 (11) 0.7863 (11) 

11 0.9832 (8) 0.9246 (9) 0.8732 (9) 

12 0.8012 (12) 0.7905 (12) 0.7872 (10) 

Especially the efficiency score of DMU 9 is 0.1148 under W/B weight restriction, 

which is far lower than 0.8343 under C/R weight restriction. Like an example 6.1, W/B 

weight restriction makes very low efficiency score for DMU 9 compared with that under C/R 

weight restriction. 

6.4 Empirical study on the comparison of C/R and W/B weight restrictions 

In previous DEA literature, C/R weight restriction was considered to represent 'relative 

importance' or 'marginal rate of substitution' of variables. Also W/B weight restriction 

interprets the 'relative importance' as ' proportion of virtual input (output) to total virtual 

input (output)'. Until now, we compared the characteristics of each weight restriction method 

using the example of single-input, multiple-output case. 

In this section, we performed the empirical study in multiple-input, multiple-output 

case to compare the characteristics of each method. The purpose of this empirical study is to 
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compare the results of C/R and W/B weight restrictions in order to see how different results 

they make when we replace the given W/B weight ratios to C/R weight ratios in the 

following manner (6.9). 

For example in one-input, two output case, we compared the results between yx ( j ) =  0.4, 

yi (j)= 0.6 (W/B) and nx / //, = 4 / 6 (C/R). 

On the two application examples of FMS and car selection data, each of 6 random 

weight ratios (case 1 to case 6) is chosen which can make different DMUs to be the 1st 

ranker. It may not acceptable to compare the results just from 6 weight ratios. However from 

choosing each weight ratio to make different DMUs as 1st ranker, we can test wide range of 

weight vectors. The chosen weight ratios and the detailed results are shown in appendix 

Table A.6 (FMS) and Table A.7 (Car selection). 

Equation (6.10) represents the Spearman coefficient of rank correlations and Table 6.3 

reports the nonparametric statistical test of the relationship between rankings under C/R 

weight restrictions and W/B weight restrictions. 

where, n = number of observations, d i  = 5, - /?, ( S i  is the rank under C/R, /?, is the 

rank under W/B) 

All cases in two applications except case 6 of FMS result in the rejection of H, at 0.001 level 

(Spearman). Many of results particularly appeared rs > 0.96 which is very close to 1. This 

(6.9) 

r1  1  n(n2-1) 
f=I (6.10) 
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implies that these two ranking results have a strong direct relationship. 

Table 6.3. Spearman rank statistic for 6 cases 

Applications Case 1 Case 2 Case3 Case 4 CaseS Case 6 
FMS 0.972 0.965 0.819 0.958 0.979 0.430 

Car Selection 0.978 0.857 0.893 0.964 0.933 0.966 

The interesting findings are first, even though these two weight restriction methods are 

taking different weight vectors to each DMU, the results are not much different in both 

ranking and the efficiency score of each DMU. 

Among the 12 cases, the same DMU is selected as the 1st ranker in 11 cases. Also in 3 cases 

under W/B weight restriction, two or three DMUs get the efficiency score 1.00 and ranked 1st 

which are also high rankers under C/R weight restriction. 

Second, the considerable difference is found, which may be one of the extreme cases, in case 

6 of FMS data. While DMU 9 is selected as 1st ranker under C/R but last under W/B weight 

restriction. It is due to the reason that C/R allows the rather flexible substitution among 

variables while W/B doesn't allow the flexible substitution among variables. 

For DMU 9 (j = 9), when we calculate the W/B proportion of each variable using CCR 

multipliers, the result is x,(y) = 0.38, x2(j) = 0.62, _p,O)=0, y2(j) = 0, y3(j)=0, y4(y) = 

1. Therefore we can see that DMU 9 can get the highest W/B efficiency score when only 

producing y4(J). However, not only the zero proportion under W/B weight restriction 

cannot be defined but also unrealistic, we tested the following three cases of W/B weight 

restriction for DMU 9 in which input proportions are kept the same as before. 

Case ( 1 ) : y, (y) = 0.005, y2  (J) =0.005, y3  (J) = 0.005, y4  (J) = 0.985 

Case(2) : f,(/)= 0.010, y2U) =0 010, j>3(y)=0.010, y4(/) = 0.970 
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Case(3): y,(y)= 0.030, y2(j) =0.030, y, (y)=0.030, y,(y) = 0.910 

The W/B efficiency score of DMU 9 is dramatically decreased by increasing output 

proportions of y, (y), y2 (J), y3 (j). The result of W/B efficiency score (DMU 9) is 0.707 

(Case 1), 0.536 (Case 2), 0.262 (Case 3) which shows that DMU 9 is the one of the extreme 

cases in view of W/B weight restriction. We also tested the above three cases with changing 

input proportions, but the efficiency score cannot exceed 0.3. This represents the above fact 

that C/R allows rather flexible substitution among variables while W/B almost doesn't allow 

substitution among variables. 

6.5 Conclusions 

In this chapter, we analyzed the characteristics of W/B weight restrictions theoretically 

and compared with those of C/R weight restriction empirically. We showed that under W/B 

weight restriction, each DMU takes all different weight vectors and some DMUs may have 

limiting efficiency score. 

To see the practical difference between two restriction methods, we performed 

empirical study and showed that even though C/R and W/B weight restriction take different 

weight vectors for each DMU, ranking results of empirical study are appeared to be very 

similar in many cases of multiple-input, multiple-output situation. However, the empirical 

study also demonstrated that the ranking result can be far different when a certain DMU has 

limiting efficiency score under W/B weight restriction. This is based on the fact that while 

C/R weight restriction allows flexible substitution among inputs or outputs, W/B weight 

restriction would not allow this flexible substitution. 
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CHAPTER 7. ALTERNATIVE APPROACH TO MEASURE OVERALL 

EFFICIENCY 

7.1 Introduction 

In this chapter, we present alternative models, which can measure each of overall 

efficiency (OE) with cone-ratio weight restrictions and compare with previous models using 

examples. 

The importance of measuring overall efficiency has been emphasized in DEA literature 

[11], [36], [38]. Sueyoshi [36] indicated that when the goal of each DMU is to achieve the 

lowest input prices, measuring allocative efficiency (AE) is much more important than 

achieving technical efficiency (TE). 

However the research for measuring overall (allocative) efficiency (OE, AE) has been 

rather limited. This is mainly due to the belief that it can be measured only when the 

information on prices and costs are exactly known, but to get this exact information in real 

applications is not easy. Cooper et al [11] mentioned the problems for measuring overall 

(allocative) efficiency in real applications such that many companies are unwilling to 

disclose their unit costs and unit prices may also be a problem when these values are subject 

to large fluctuations. Also when the decision maker's interest is not limited only to cost or 

price, there are many factors that cannot be easily quantifiable, for example variables 

represented by quality or customer service parameters. 

The previous models for measuring overall (allocative) efficiency uses a two-step 

approach. For instance, to measure the cost efficiency, it tries to find the optimal quantities of 

each input of DMU j with objective function which minimizes the actual total costs in step 1 
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and in step 2 it calculates the overall efficiency by the ratio of total optimal costs to total 

actual costs of DMU j. Therefore it is believed that when we don't have exact information on 

prices or costs, we cannot perform the calculation in step 1, so we cannot perform the 

calculation in step 2 either. This belief made even harder to use previous two-step models 

effectively in the case that we need to do some efficiency analysis according to possible 

ranges of prices or costs. 

In this chapter, we developed the models that can measure the overall efficiency in a 

single step. The only difference between the proposed and CCR model is the added cost 

(price) vector constraints, which results in the DEA models with cone-ratio weight 

restrictions. That is, the proposed model can directly measure the overall efficiency score of 

DMU j. 

In previous DEA literature, we couldn't find any prior reference in which the 

relationship between two models (models for measuring overall (allocative) efficiency and 

the models with cone-ratio weight restrictions) is explored and thus these two models have 

been generally treated separately. However, through the suggested models, we can show the 

relationship between two models such that the models for measuring overall efficiency can 

be considered as a subset of the models with general cone-ratio restrictions. 

The rest of this chapter is organized as follows. In section 7.2, we introduce the 

concepts of three efficiency measures in DEA. In section 7.3, previous models for measuring 

overall efficiency are presented with examples. And in section 7.4, alternative models for 

measuring overall efficiency are developed and compared with previous models using 

examples. Finally, conclusions are provided in section 7.5. 
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We want to indicate that many descriptions and models in section 7.2 and 7.3 are 

referenced by recently published DEA text by Cooper et al [11]. 

7.2 The concepts of three efficiency measures 

Figure 7.1 shows the concepts of three efficiency measures originated by Farrell. Let us 

a s s u m e  t h a t  1 )  e a c h  D M U  u s e s  t w o  i n p u t s  ( x , ,  x 2 )  i n  o r d e r  t o  y i e l d  a  s i n g l e  o u t p u t  ( y ) ,  

under the condition of constant returns to scale 2) two inputs and one output are assumed to 

be all positive. 

cxxx +c2x, = 

Figure 7.1 Technical, Allocative and Overall efficiency 

P is a point in the interior of the production possibility set representing the activity of a 

DMU which produces this same amount of output but with greater amounts of both inputs 

than any point on the production frontier. 

Then three efficiency measures can be defined as follows. First, technical efficiency 

(TE) of DMU P can be measured by TE = OQ / OP since DMU Q exists on the frontier that 
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use less input quantities than P to yield the same quantity of output. Second, allocative 

efficiency (AE) of DMU P can be measured by AE = OR [ OQ. The budget (cost) line, 

which has the slope equal to the ratio of two input prices of DMU P is c,x, +c2x2 = it, and 

that of DMU B is c,xj +c2x2 = k0 (kQ < k{ ). Therefore the cost of (£,-&„) can be reduced 

by moving this line in parallel fashion until it intersects with the isoquant at B. The 

corresponding measure of (1 - OR/ OQ) indicates the allocative inefficiency that denotes a 

possible reduction in cost by using appropriate input mixes. Third, overall efficiency (OE) 

denotes a possible reduction in cost due to changing from P (observed input quantities) to B 

(cost minimizing input quantities) and it can be measured by OE = OR / OP. 

Therefore we have the relation to each of three efficiency measures 

OE-^9Q^ =  TE,AE (7.1) 
OP OP OQ 

7.3 Previous models for measuring overall efficiency 

7.3.1 Performing procedure 

The concept of overall efficiency has been researched focusing on each preferable 

interest by several ways, i.e. 1) cost efficiency, 2) revenue efficiency, 3) profit efficiency and 

4) ratio efficiency. This standard approach to determine overall efficiency and its 

components is due to Fare et al [16]. 

In this section, we begin with explanation of the following models that have been used 

to measure overall efficiencies in DEA literature. These models are well introduced in 

recently published DEA text [11]. To calculate each overall efficiency, we have to perform 
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the following two-step procedures. 

Step 1. From the following LP models, we can find the optimal x* and y' for each 

DMU j. Where, ch  is the unit cost of the input xf of DMUo, and pro  is the unit 

price of the output yr of DMUo, which may vary from one DMU to another. 

(Cost-E) Min 

subject to x,. > ^XyÀj, i = \, - - , m 
y=i 

r 5 (7.2-a) 
i=i 

Ay > o, vy 

(Revenue-E) Mzx 
r=l 

subject to x,.0 > ^ , z = 1, • • •, m 
;=i 

^  -  Z  >  r  =  1, •  •  • ,  J  (7.3-a) 
7=1 

Ay > o, vy 

(Profit-E) A/ax 
r=l i=l 

ft 

subject to x, = < xM, / = 1, • • •, m 
y«i 
« 

^  = Z - y* '  r = 1, • • • ,  5 (7.4-a) 
7=1 

A, > o, vy 

(Ratio-E) Max ^proyr  / %c,,x, 
r*l / i'=l 

subject to x,. = Y*xaXj - i = l, -, m 
7=1 
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yr = i*y^j r = s (7.5-a) 
7=1 

Ay > 0, Y/ 

Step 2. Using the optimal value of x' and y *, in step 2, we can calculate each overall 

efficiency for DMU j. 

ZC/X £pr0yr0 

£c=-^ .  (7.2-b) £,=^! , (7.3-b) 

Y,Pr0y'r 
t=l r*l 

i m 5 / m 

^= Z7 S '  (7.4-b) ^  , (7.5-b) 

Y ,Pr oy 'r - £C,0< / 2X*,' 
r=l /=! r=I / /=! 

7.3.2 Example 

Here we suggest an example 7.1, which is excerpted from Cooper et al [11] (p.247) for 

the purpose of explaining the above models and afterward comparing the result with those of 

our models. Table 7.1 shows the data for 4 DMUs with two inputs and two outputs, along 

with the unit cost for each input and unit price for each output. And Table 7.2 shows the 

results of Cost, Revenue, Profit and Ratio efficiencies of the 4 DMUs. 

Table 7.1 Example 7.1 data 

DMU Input Output Input Cost Output Price 

*2 ^2 A C2 PI PI 
1 2 3 5 8 2 2 5 5 

2 1 5 2 6 2 4 4 5 

3 3 8 4 8 3 3 6 4 

4 2 7 1 2 4 2 7 4 
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According to the above models, for example, cost efficiency for DMU 2 is calculated by the 

following procedure. 

Step 1. Solve the model (2-a) 

(Cost-E) Mitt 2x, + 4x2 

subject to x, - 2A, - 1A2 - 3^ - 2A4 > 0 

Xj — 3A, — — 1X4 ^ 0 

5 A, + 2A2 +4A3 + 1A4 > 2 

8A, + 6 A, +8^ + 2A4 > 6 

Ay > 0, vy 

Then we get the optimal solution such that xx = 1.5, x2 = 2.25, A, = 0.75 with 

object ive funct ion value 12.  All  the other  X variables  are  0 .  ( i .e .  /L,  =  z 3  = A4  =0) 

Step 2. Solve the model (2-b) 

j=i 

(2x1)+ (4x5) 22 

Table 7.2 Results of example 7.1 

DMU CCR Cost Revenue Profit Ratio 

1 1 1 1 1 1 

2 1 0.545 1 1 0.461 

3 0.571 0.455 0.571 0.326 0.411 

4 0.214 0.159 0.208 0 0.142 

The revenue, profit and ratio efficiencies are also can be obtained by solving 

sequentially the model (3-a, 3-b), (4-a, 4-b) and (5-a, 5-b) respectively. When the actual 

profit appears to be negative, the profit efficiency score is assigned the value 0. 
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7.4 Alternative approach to measure overall efficiency 

7.4.1 The alternative models using cone-ratio constraints 

In this section, we suggest the models, which can measure the overall efficiency (i.e. 

cost efficiency, revenue efficiency and ratio efficiency) using cone-ratio constraints. Using 

Figure 7.1, we showed the concepts of three efficiency measures of DMU P are 

TE=OQ/OP, AE = ORfOQ, OE = OR/OP. 

And the relationship of three efficiency measures is 

OE = — = — x = TE x AE. 
OP OP OQ 

x-, 

O 

C,Jc' +c2xi = k0  

X ,  

Figure 7.2 Illustration of suggested model 

Also c,x, +c2x2  = kj and c,x' +c2x'2  = k0  are isocost lines for DMU B and DMU P 

respectively which are parallel to each other. In Figure 7.2, OP' represents an orthogonal 

vector to the isocost lines, which passes through the origin. It is clear from above figure that 

we can find the unique vector, which is perpendicular to the isocost lines and passes through 
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the origin. And Q', R' are the projection points which are projected perpendicular to the 

vector OP' from Q and R respectively. Since Q and Q', R and R', P and P' lie on each 

isocost line, it is clear that these points have the same costs respectively. 

Therefore, the following relation (7.6) should be hold that is also obvious by the 

property of right-angled triangle in A OPP'. 

TZ=°2- = °2L, AE=°« = °*, OE = °*=°* (7.6) 
OP OP' OQ OQ' OP OP' 

And the relationship of three efficiency measures also holds by (7.7) 

And the properties suggested in chapter 5 can be modified as follows. 

We define the vector OP' as the cost vector as follows (Dl), (D2). 

(Dl) Cost vector c is a vector, which is perpendicular to the iso-cost lines (planes) of 

DMU j and passes through the origin. Similarly, price vector p is a vector, which is 

perpendicular to the iso-revenue lines (planes) of DMU j and passes through the 

origin. 

(D2) The cost vector of DMU j, which uses m inputs with the unit costs (c,, • • •, cm ) and 

passes through the origin, is the (c,, •••, cm). Similarly, the price vector of DMU j, 

which produces r outputs with the unit prices (/>,, • ••, pr) and passes through the 

origin, is the (/?„ •••, pr). 

After all, when the cone-ratio weight restrictions (here, cost or price ratios) are applied 

to the general CCR model, all DMUs are projected to the cost (price) vector along with the 

iso-cost (iso-revenue) lines (planes), and the overall efficiency is measured by the following 
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ratio (PI). 

(PI) When the cost (price) vectors are applied to the CCR model, the overall efficiency of 

DMU j can be measured by the following ratio. 

(one-input, multiple output or multiple-input, one output case) 

Overall efficiency score ofDMU j = 

{Norms of orthogonal projection of DMU jto the cos t (price) vector) 

(Norms of orthogonal projection of DMU j* to the cos t (price) vector) 

where, DMU y" has the largest norm (revenue maximization case) or smallest 

norm (cost minimization case) when projected to the price (cost) vector. 

However in multiple-input, multiple-output cases, we cannot represent the efficiency of 

DMU j using 2-dimensional figure and thus we have to say that 

Overall efficiency score ofDMU j = 

virtual revenue of DMU j j virtual costs of DMU j 

virtual revenue of DMU j' / virtual costs of DMU j' 

where, DMU j ' has the largest efficiency score with the same input and output 

cost (price) vectors with DMU j respectively. 

The weight vector for measuring overall efficiency can be represented such as cost 

vector :  c = (v,, • • •, vm ) = (c,, • • • , cm ), price vector : p = (//,,- • • , nr  ) = (/>„ — , pr  ). 

Therefore when we consider the DBA models for measuring overall efficiency as one of 

general cone-ratio restrictions, we can replace the each of input, output multiplier to each 

corresponding cost and price. Therefore, the following two properties (7.8), (7.9) hold. 
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^L = A,.. . ,A =  A, 2l = £L, = (7.9) 
M 2  PI MS PS MI PI  M,  P,  

That is, the only difference of proposed model with CCR model is the added constraints 

according to the each case as follows. 

1. Cost Efficiency (7.10) : add constraint (7.8) 

( Cost-E ) Max h jo  = nryr  Vo 
r=l 

subject to £ vi
xija = 1 

i=i 

S  WI vixi) - °' y = i, .  . ,« (7-10) 
r=l i'=l 

iL =  £L,.. . ,^L=iL, 
V2 C2 K C, 
fir, v, >0, V r a/i</ z 

2. Revenue Efficiency (7.11) : add constraint (7.9) 

S 

( Revenue-E ) Max = £ Mry^a 
•> " -

subject to =1 

i=i 

Z Wri v<*ir- - °» y = (7.11) 
r=I i'=l 

A =  £L,.. . ,£L =  £L, 
^2 f 2 ' ' A*, />, ' 
/vr, v( >0, V r am/ z 

3. Ratio Efficiency (7.12) : add constraints (7.8) and (7.9). 



www.manaraa.com

118 

( Ratio-E ) Max hu = ^ Mr 
r  r-\ 

m 

subject to ^ViXjj =1 
1=1 

I Wn "£ vixij ^ 0. j =\,...,n (7.12) 
rsI /=! 

EL = £L t... jB. = £L, 
Mi Pi '  '  Ps '  

M r> v ,  ^ 0, V r and i 

From the property of (7.8), the following formulation (7.13) is equivalent to (7.10). 

S 

( Cost-E ) Max hJa = £ pTy^ 
P' r=l 

m 

subject to ^cixija =1 

1=1 

£ c'x.y - °' y = l,  •••,« (7.13) 
r=l i-\ 

pr, c, >0, V r an</ z 

Similarly we can make formulations which is equivalent to (7.11) and (7.12) respectively 

with replacing v i  to c,, Vz and nr  to pr,Vr. 

After all, the previous models are equivalent to the suggested models that can be proved 

as follows. For example, when we think of cost efficiency of DMU j0, the previous model 

uses the two-step approach (7.2-a) and (7.2-b). 

Now we think of the dual of (7.2-a), it becomes (7.14). 
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Max Y^fi ryn  
rs I 

m 

subject to £ vixi = 1 
i=t 

™ ÎLvixii - °' v> (7.14) 
r=l i=l 

0 < v. < ch, i = 1, ••• ,  m 

/ir, v, >0, V r and z 

By primal-dual relationships, two properties should be hold 

0 !>;>v0 = £c,.0x; 
r=I ;=I 

2) from complementary slackness condition, x'  (cj0 - v ;)  = 0. 

That is, if x,' >0, then v i  = cJ0 Vz at optimality 

Therefore, (7.14) can be rewritten as (7.15) at optimality 
S 

MaX Yt^ryro 
r= \  

subject to ^cl0xt = 1 
l'=l 

0, vy (7.15) 
r=I i=I 

> 0, V r 

After all, cost efficiency of DMU j0  in previous model (7.2-b) can be calculated by 

suggested alternative model (7.10) by reason of (7.16) 

£C«X É^X 
= T7^ n (7-16) 

Z^i'o^zo I Z Mryrj 
1=1 \'-=l V max 

Also, equivalence of models for revenue and ratio efficiency of DMU j can be proved 
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in a similar manner. 

7.4.2 Example 

Here, we explain above models using two examples 1) when the unit costs (prices) are 

the same for all DMUs (Example 7.2) 2) when the unit costs (prices) are not the same for all 

DMUs (Example 7.1). Table 7.3 shows the data of first case and the data of second 

case was shown in Table 7.2. It is clear in Figure 7.3 that DMU 1 and 2 are CCR-efficient but 

only DMU 2 is overall efficient (here, cost efficient). 

Table 7.3. Example 7.2 data and results 

dmu 4 *2 4 C 2  DMU CCR Cost-E 

1 4 2 4 2  1 1 0.8 

2 2 4 4 2  2 1 1 

3 4 6 4 2  3 0.6 0.571 

Cost efficiency of DMU 3 is explained as a ratio OR j 03, but suggested model 

measures the ratio OR' / 03'. Both measures should be the same from the property of right-

angled triangle. 

Model to find the cost efficiency of DMU 3 is 

(Cost-E) Max fj 

subject to 4v, + 6v2 = 1 

/i - 4v, - 2V2 < 0 

/J .  -2v, -  4V2  < 0 

/j. - 4v, - 6V2 < 0 

v, - 2V2 =0 

H > 0, v, > 0, v, > 0 



www.manaraa.com

121 

4xt +2x2 = 16 

Figure 7.3. Illustration of example 7.2 

And it gives the solution h'̂  = 9* - 0.57143. When we multiply the efficiency score 

to the amount of each input of DMU 3, 0' (x,, x2) = 0.57143 x (4, 6)= (2.2857,3.42858), 

then this point is the coordinate of point R. Therefore we can see that the above model 

measures the ratio of OR / 03 = OR'/03'. On the other hand, when we use the model (7.2-a) 

and (7.2-b) to measure cost efficiency of DMU 3, we also can obtain the same score. That is, 

(Cost-E) Min 4x, + 2x2  

subject to x, - 4A, - 2A2 - 41, > 0 

x, — 2A, — 4A2 — 6A3 ^ 0 

A, + À2 + >1 

A, > 0, A2>0, A^ >0. 

And it gives the solution with x" = 2, x2" = 4, A2 = 1 and A, = A, = 0, which is the 

same with the coordinate of DMU 2. Therefore 
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^ =  (4x2)jK2x4)= i6 = 0 5 7 1 4 3  

_ (4x4)+ (2x6) 28 
CU,Xio 

1 = 1 

After all in this example 7.2, we can state the difference in the way of measuring 

overall efficiency between two models as follows. That is, to measure the cost efficiency of 

DMU 3, proposed model measures the ratio of OR j 01 = OR')03' directly while previous 

model measures the ratio of total costs of DMU 2 / total costs of DMU 3. 

Then the allocative efficiency (AE) of DMU 3 can be obtained from equation (7.7) 

& 221 m09a 
TE TE 0.6 

When the unit costs (prices) are not the same for all DMUs like example 7.1, we can also 

apply models (7.10), (7.11) and (7.12) replacing previous models (7.2), (7.3) and (7.5) 

respectively. 

1) Cost efficiency of DMU 2 : objective function value = 0.54545 

(Cost-E) Max 2/i, + 6/i2 

subject to lv,+5v2=l 

5//, + 8fu2 - 2v, - 3v, < 0 

2/i, + 6//2 -lv, - 5v2 < 0 

4//, + 8//, -3v, - 8V2 < 0 

1 + 2//2 - 2v, - 7v2 < 0 

2v, - v2 = 0 • cost vector constraint 

Mi ^0, 0, y, > 0, v2  > 0 

2) Revenue efficiency of DMU 3 : objective function value = 0.57143 

(Revenue-E) Max 4/1, + 8 /z2 
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subject to 3vj + 8v, =1 

5fix + 8/i, — 2vt — 3v2 < 0 

2//, + 6//, - lv, - 5v, < 0 

4/i, + 8/i, — 3vt — 8v, < 0 

1/i, + 2//, - 2v, - 7v, < 0 

4/i, - 6/i, = 0 • price vector constraint 

Mi ^0, /i ,  > 0, v, >0, v, £ 0 

3) Ratio efficiency of DMU 3 : objective function value = 0.41056 

(Ratio-E) Max 4 /i, + Sju2 

subject to 3v, + 8v, = 1 

5/ij  + 8/i,  -  2v, -  3v2  < 0 

2/i, + 6/i, - lv, - 5v, < 0 

4/i, + 8/i, — 3v, — 8v, < 0 

1//, + 2/i, - 2v, - 7v, < 0 

3v, -3v, =0 •  cost vector constraint 

4/i, - 6/i2 = 0 • price vector constraint 

Mi ^ 0, pi2 > 0, v, > 0, v2 > 0 

Even though we showed just one case in each of efficiency, all solutions are exactly 

equal to the result in Table 7.2. When the unit costs (prices) are not the same for all DMUs, 

we should use the DMU s own cost vector (price vector) which is being analyzed. 

7-5. Conclusions 

In this chapter, we developed alternative models for measuring overall efficiency (OE) 

with cone-ratio weight restrictions and compared those with previous models. 

The contributions by suggesting alternative models we believe are 

1) We showed that the overall efficiency (cost / revenue / ratio efficiency) model can be 
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referred as one of the general cone-ratio restriction type problems, which considers only 

prices of outputs or costs of inputs as applied weights. 

2) From suggested models, it is clear that all we need to know to measure the overall 

efficiency is not the exact prices or costs but the ratios of prices or costs. Therefore in cases 

where we have insufficient information on prices or costs, we can extend the availability of 

these models by applying possible ranges of price or cost ratios. 

Although models for measuring overall efficiency can give some useful information, 

there still needs a further research to overcome the following. First, these models do not 

identify a specific way for increasing overall efficiency, but they indicate optimal ratios of 

costs (prices). Second, the overall efficiency of DMU j is calculated based on the assumption 

that all the other DMUs are assumed to use DMU f s cost or price vectors, and it may not 

appropriately reflect a variety of management strategies. 



www.manaraa.com

125 

CHAPTER 8. CONCLUSIONS 

8.1 Summary 

Other than measuring relative efficiency, DEA has been used in a number of other ways 

to elaborate further on the performance of individual units or to ascertain how the units could 

become more efficient. Also researchers have developed methods for using DEA as a ranking 

model, which results in a recent review by Adler et al [1], 

In this dissertation, we classified DEA ranking models into two categories based on 

whether preferences (weights) are given or not. In fact, many DEA ranking models start with 

the assumption that there are no given preferences (criteria), which is often the case in real 

life applications. 

When the decision maker's preferences (weights) are not given, the ranking criteria and 

corresponding results of each model vary by the methods each model uses. When decision 

maker's preferences (weights) are given, the accuracy and acceptability of the results depend 

on how well these given preferences are reflected to each weight restriction method. This 

motivates the research on the characteristics of each model, which hopefully can help 

decision makers to make a better decision. 

In chapter 3 and 4, we analyzed the characteristics of A-P model and cross-efficiency 

evaluation, which are frequently used in case that we don't have any prior relative weights of 

inputs and outputs. In chapter 5 and 6, we considered the characteristics of DEA ranking 

models with cone-ratio and Wong and Beasley weight restrictions, both of which take 

decision maker's preferences into account each of weight restrictions. Finally in chapter 7, 

we suggested alternative models for measuring overall efficiency. 

The followings are a summary of conclusions of each chapter. 
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In chapter 1, we suggested classification of DEA ranking models and purposes of using 

DEA ranking models. This is done to say that the purpose of DEA ranking models (even 

though they have the name of ranking model) can go beyond ranking to importing additional 

useful information. This information could be helpful in selecting DEA ranking models 

according to one's purposes. 

In chapter 2, we briefly introduced the CCR model with basic definitions, units 

invariance theorem and example as well as the weight restriction models suggested in 

previous DEA literature. 

In chapter 3, to identify the characteristics of the A-P model and cross-efficiency 

evaluation, we provided empirical ranking results in both models after describing their 

ranking criteria. Then we suggested a specialization index (SI) in the A-P model and 

a Ak score in the cross-efficiency evaluation to identify specialized DMU. The result table 

used to find the SI score clearly shows A-P model characteristics. That is, the A-P model 

often selects the 1st ranker among specialized performers, which doesn't have any near 2nd 

follower. 

Also we examined the primary conclusions on the 1st ranker of cross-efficiency 

evaluation and showed these conclusions are not always true. That is, the 1st ranker in cross-

efficiency evaluation is not always the winner with many competitors in the sample. 

Finally we suggested the biplot, which facilitates the comparison of characteristics of 

each model visually. Based on the fact that cross-efficiency evaluation uses almost fixed 

weights in many of multiple-input, multiple-output cases, we can represent the weight 

direction of cross-efficiency evaluation in the biplot. 
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Empirical studies are performed to compare the 1st ranker in cross-evaluation with that 

under restriction of equal input, output weights along with the explanation of simple case in 

which cross-efficiency makes unexpected ranking result. 

In chapter 4, we showed that cross-efficiency evaluation in effect applies almost fixed 

weights in many of multiple-input, multiple-output cases, which is done as an extension of 

previous work [4] that focused on single-input, multiple-outputs case. 

The contributions in this chapter are first, we showed that when the input values of all 

DMUs are not unified 1, cross-efficiency scores are not exactly the same as those under fixed 

weighting scheme. Second, we developed an equation, which shows an efficiency score 

under fixed weighting scheme in multiple-input, multiple-output situation. Third, we 

analyzed the difference between real cross-efficiency scores and those under fixed weighting 

scheme in multiple-input, multiple-output situation by analytically and empirically. 

Empirical results showed that cross-efficiency evaluation in effect applies almost fixed 

weights in many of multiple-input, multiple-output cases. 

In chapter 5, we proved two properties (PI) and (P2). Property (PI) shows a way to 

measure the efficiency score when cone-ratio weight restrictions are applied under constant 

returns to scale with single- input, multiple-outputs (or multiple-inputs, single-output) in 

DEA. And property (P2) indicates that in multiple-input, multiple output case, C/R weight 

ratios don't represent perfect substitution among inputs (or outputs) unlike in single-input, 

multiple-output case. 

Based on property (PI), we proposed some graphical explanations of other DEA issues, 

1) multiple solution problem 2) multipliers of cross-efficiency evaluation 3) target points 

under cone-ratio weight restrictions using one-input, two-output case in DEA. We believe 
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that a graphical explanation can be useful, even it is limited to a 2-dimensional case, which 

provides simple but intuitional knowledge for further analysis in many cases. 

In chapter 6, we analyzed the characteristics of W/B weight restrictions theoretically 

and compared with those of C/R weight restriction empirically. We showed that under W/B 

weight restriction, each DMU takes all different weight vectors and some DMUs may have 

limiting efficiency score. 

To see the practical difference between two restriction methods, we performed an 

empirical study and showed that first, even though C/R and W/B weight restriction take 

different weight vectors for each DMU, ranking results of empirical study are appeared to be 

very similar in many cases of multiple-input, multiple-output situation, second, however the 

ranking result may be far different when a certain DMU has limiting efficiency score under 

W/B weight restriction. This is based on the fact that while C/R weight restriction allows 

flexible substitution among inputs or outputs, W/B weight restriction would not allow this 

flexible substitution. 

In chapter 7, we presented alternative models, which can measure each of overall 

efficiency (OE) with cone-ratio weight restrictions and compared with previous models using 

examples. The only difference between the proposed and CCR model is the added cost 

(price) vector constraints, which results in the DEA models with cone-ratio weight 

restrictions. 

That represents that the proposed model can directly measure the overall efficiency 

score of DMU j and previous models would have the same characteristics with those of cone-

ratio weight restriction models. For example, 1) we can apply the models when we know just 

the possible ranges of costs or prices. 2) Also they allow flexible substitution for measuring 
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overall efficiency. 

8.2 Future Research 

Although many kinds of DEA ranking models have been developed, it is still necessary 

to develop more precise weighting schemes for DEA ranking models. 

The possible future research areas on DEA ranking models include the following. 

First, it would be useful to extend DEA ranking models to consider the variable returns to 

scales, since most of previous ranking models have the assumption of constant returns to 

scale. Second, more importantly, the linearity assumption in DEA ranking model may be 

problematic when the preference of a decision maker cannot be represented as a linear 

function. Third, in case that the decision maker has the preference, which is linear but varies 

according to certain ranges of input or output quantity, it is not easy to reflect to DEA 

ranking models. 

While models for measuring overall efficiency can give some useful information, there 

still needs to be further research to overcome the followings. First, these models cannot tell 

the specific way to increase overall efficiency except telling optimal ratios of costs (prices). 

Second, the overall efficiency of DMU j is calculated based on the assumption that all the 

other DMUs are assumed to use DMU f s cost or price vectors, and it may not appropriately 

reflect a variety of management strategies. 

Finally, even though we presented the characteristics of W/B weight restriction and 

compared with C/R weight restriction, further research is still necessary to thoroughly 

analyze the merits of setting restrictions on the virtual inputs and outputs. 



www.manaraa.com

130 

APPENDIX. RESULTS OF EMPIRICAL STUDY 

A.1 Application data 

(a) FMS selection (b) Car Selection 

DMU FMS Data DMU Car Selection Data 

*2 y2 ^3 y 4 *2 *3 *4 ft y2 

1 17.02 5.0 42 45.3 14.2 30.1 1 28.28 2 6.8 5.4 29 115 
2 16.46 4.5 39 40.1 13.0 29.8 2 44.30 5 6.3 4.8 50 140 
3 11.76 6.0 26 39.6 13.8 24.5 3 44.80 4 5.8 4.3 50 142 
4 10.52 4.0 22 36.0 11.3 25.0 4 29.80 4 6.3 5.6 34 110 
5 9.50 3.8 21 34.2 12.0 20.4 5 44.90 4 6.3 4.5 45 137 
6 4.79 5.4 10 20.1 5.0 16.5 6 42.95 4 5.8 4.6 50 143 
7 6.21 6.2 14 26.5 7.0 19.7 7 33.30 4 8.8 6.0 53 145 
8 11.12 6.0 25 35.9 9.0 24.7 8 38.01 5 8.7 5.1 55 152 
9 3.67 8.0 4 17.4 0.1 18.1 9 43.40 4 9.2 6.1 50 146 

10 8.93 7.0 16 34.3 6.5 20.6 10 47.50 6 9.0 5.5 73 163 
11 17.74 7.1 43 45.6 14.0 31.1 11 21.55 3 7.3 6.1 24 105 
12 14.85 6.2 27 38.7 13.8 25.4 12 34.30 4 7.1 4.8 45 140 

13 37.80 5 7.8 5.8 48 137 
14 36.40 5 7.2 5.5 53 145 
15 44.60 5 8.0 5.2 60 145 
16 44.90 5 8.4 5.6 55 160 
17 46.30 6 7.6 5.9 70 165 
18 45.30 6 8.8 5.6 65 155 
19 26.15 7 8.3 6.4 58 139 
20 30.61 7 9.5 7.5 65 147 
21 251.00 11 12.0 9.0 200 220 
22 263.24 20 15.0 11.0 218 229 
23 362.80 34 17.0 12.0 231 220 
24 231.80 16 13.0 8.5 204 235 
25 267.00 31 18.0 11.0 295 245 
26 239.00 11 14.0 8.0 162 220 
27 322.00 17 16.0 9.0 214 240 
28 325.00 20 17.0 10.0 255 250 
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(c) Location of electrical power station (d) Location of solid waste management system 

DMU Hydro electrical power station 

x, x2 *3 *4 y\ y2 

1 80 6 5.4 8 90 5 
2 65 2 9.7 1 58 1 
3 83 4 7.2 4 60 7 
4 40 10 7.5 7 80 10 
5 52 6 2 3 72 8 
6 94 7 3.6 5 96 6 

DMU Solid waste management system 

*2 *3 *4 *5 y i y2 >3 

1 656 552678100 609 1190 670 5 14 13900 
2 786 539113200 575 1190 682 4 18 23600 
3 912 480565400 670 1222 594 4 24 39767 
4 589 559780715 411 1191 443 9 10 13900 
5 706 532286214 325 1191 404 7 14 23600 
6 834 470613514 500 1226 384 6.5 18 40667 
7 580 560987877 398 1191 420 9 10 13900 
8 682 532224858 314 1191 393 7 14 23600 
9 838 466586058 501 1229 373 6.5 22 41747 
10 579 561555877 373 1191 405 9 9 13900 
11 688 532302258 292 1191 370 7 13 23600 
12 838 465356158 499 1230 361 6.5 17 42467 
13 595 560500215 500 1191 538 9 12 13900 
14 709 532974014 402 1191 489 7 17 23600 
15 849 474137314 648 1226 538 6.5 20 40667 
16 604 560500215 500 1191 538 9 12 13900 
17 736 532974014 402 1191 489 7 17 23600 
18 871 474137314 648 1226 538 6.5 20 40667 
19 579 568674539 495 1193 558 9 7 13900 
20 695 536936873 424 1195 535 6 18 23600 
21 827 457184239 651 1237 513 7 16 45167 
22 982 457206173 651 1239 513 7 16 45167 
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(e) Economic performance of Chinese cities (f) Evaluating regions in Serbia 

DMU Economic performance of Cities DMU Evaluating regions in Serbia 

*2 y, y2 y3 *2 *3 *4 y\ y 2 y 3 ^4 
1 2874.8 16738 160.89 80800 5092 1 1781 1621 436 205 174 497 22 66 
2 946.3 691 21.14 18172 6563 2 3257 2718 314 221 172 497 22 61 
3 6854 43024 375.25 144530 2437 3 2328 2045 475 179 148 417 18 53 
4 2305.1 10815 176.68 70318 3145 4 4248 3228 419 328 142 760 35 84 
5 1010.3 2099 102.12 55419 1225 5 2406 1523 345 215 160 443 22 62 
6 282.3 757 59.17 27422 246 6 4018 5514 1314 553 487 1925 63 192 
7 17478.61169001029.09 351390 14604 7 3480 1941 507 309 220 521 36 79 
8 661.8 2024 30.07 23550 1126 8 3279 1496 321 339 109 699 38 71 
9 1544.2 3218 160.58 59406 2230 9 2475 932 158 200 37 431 19 48 
10 428.4 574 53.69 47504 430 10 1244 2445 656 226 83 516 24 52 
11 6228.1 29842 258.09 151356 4649 11 3855 1594 429 253 82 487 20 39 
12 697.7 3394 38.02 45336 1555 12 2387 4029 658 312 109 828 35 95 
13 106.4 367 7.07 8236 121 13 2614 1662 625 264 112 632 24 62 
14 4539.3 45809 116.46 56135 956 14 3506 3080 282 178 127 461 16 47 
15 957.8 16947 29.2 17554 231 15 3625 820 254 158 71 522 13 43 
16 1209.2 15741 65.36 62341 618 16 6141 2018 524 335 180 782 39 95 
17 972.4 23822 54.52 25230 513 17 3016 1332 489 230 168 518 25 72 
18 2192 10943 25.24 40267 895 18 3917 1756 484 300 100 714 37 70 

19 2957 1321 532 296 169 652 29 75 
20 2440 2011 945 382 206 1583 38 112 
21 2230 506 151 111 35 267 11 23 
22 2764 453 199 116 43 266 10 33 
23 2771 682 294 255 100 640 26 60 
24 3519 782 341 243 110 546 29 55 
25 3120 1441 578 672 85 976 13 62 
26 2420 1070 303 414 40 473 6 31 
27 1909 644 395 376 35 289 9 27 
28 2051 517 150 275 23 304 6 23 
29 1412 235 222 217 28 164 7 17 
30 3222 15123 5321 1602 1284 6781165 580 
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A.2 (FMS Data) Results comparison of SI, A-P and cross-efficiency scores 

DMU 1 2 3 4 5 6 7 8 9 10 11 12 

1 1.000 0.915 1.000 0.836 0.714 0.607 0.943 1.000 0.359 0.764 1.000 1.000 
2 0.956 1.000 0.959 0.881 0.686 0.601 0.897 0.977 0.367 0.704 0.966 0.984 
3 0.919 0.606 0.982 0.752 0.862 0.774 0.925 0.949 0.422 0.904 0.924 0.953 
4 0.910 0.915 0.927 1.000 0.862 0.801 0.891 1.000 0.482 0.956 0.896 1.000 
5 0.956 0.794 1.000 0.881 1.000 0.815 0.943 1.000 0.435 1.000 0.927 1.000 
6 0.825 0.438 0.932 0.744 0.547 1.000 0.943 0.962 0.698 0.951 0.954 0.967 
7 0.897 0.459 1.000 0.748 0.628 0.973 1.000 1.000 0.643 1.000 1.000 1.000 
8 0.916 0.608 0.927 0.777 0.584 0.687 0.917 0.961 0.450 0.860 0.945 0.950 
9 0.482 0.315 0.422 0.632 0.010 0.973 0.659 0.753 1.000 0.849 0.672 0.724 
10 0.772 0.427 0.760 0.642 0.454 0.679 0.822 0.833 0.468 0.954 0.783 0.795 
11 0.956 0.665 0.977 0.719 0.625 0.590 0.923 0.951 0.355 0.714 0.983 0.953 
12 0.760 0.608 0.801 0.687 0.727 0.625 0.748 0.794 0.347 0.720 0.759 0.801 

SI 0.862 0.646 0.891 0.775 0.642 0.760 0.884 0.932 0.502 0.865 0.901 0.927 
rank 6 3 9 5 2 4 8 11 1 7 10 11 

CE 0.848 0.839 0.777 0.844 0.867 0.727 0.758 0.724 0.564 0.618 0.747 0.667 
rank 2 4 5 3 1 8 6 9 12 11 7 10 

A-P 1.045 1.093 0.982 1.134 1.160 1.028 1.06 0.961 1.432 0.953 0.983 0.801 
rank 6 4 8 3 2 7 5 10 1 11 8 12 
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A.3 (Car Selection Data) Results comparison of SI, A-P and cross-efficiency scores 

DMU 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

1.000 0.811 0.629 0.926 0.917 0.888 0.895 0.779 1.000 0.625 0.924 0.935 0.934 0.934 0.917 
0.487 0.940 0.884 0.925 0.869 0.923 0.734 0.872 0.838 0.866 0.673 0.876 0.916 0.916 0.856 
0.617 1.000 1.000 0.969 1.000 0.972 0.804 0.920 1.000 0.941 0.700 0.934 0.971 0.971 1.000 
0.478 0.784 0.589 0.892 0.721 0.867 0.714 0.742 0.708 0.622 0.763 0.831 0.875 0.875 0.707 
0.597 0.925 0.918 0.905 0.946 0.902 0.738 0.857 0.918 0.854 0.675 0.883 0.900 0.900 0.912 
0.622 1.000 0.941 1.000 0.983 1.000 0.827 0.919 0.994 0.912 0.731 0.952 1.000 1.000 0.993 
0.630 0.925 0.734 0.933 0.900 0.892 1.000 0.931 1.000 0.818 0.918 0.952 0.975 0.975 1.000 
0.529 0.993 0.905 0.927 0.940 0.895 0.873 1.000 0.922 0.941 0.830 0.952 0.946 0.946 0.947 
0.635 0.827 0.723 0.817 0.863 0.792 0.826 0.811 0.936 0.747 0.739 0.838 0.845 0.845 0.919 
0.472 0.982 0.918 0.878 0.879 0.859 0.895 0.973 0.958 1.000 0.717 0.879 0.926 0.926 1.000 
0.609 0.729 0.506 0.895 0.731 0.843 0.760 0.714 0.689 0.518 1.000 0.878 0.874 0.874 0.658 
0.609 1.000 0.877 1.000 0.979 0.972 0.867 0.973 0.943 0.883 0.865 1.000 1.000 1.000 0.947 
0.476 0.867 0.715 0.887 0.795 0.863 0.771 0.839 0.793 0.758 0.751 0.860 0.890 0.890 0.807 
0.504 0.975 0.801 0.995 0.869 0.972 0.858 0.939 0.874 0.860 0.820 0.952 1.000 1.000 0.897 
0.504 0.924 0.857 0.856 0.866 0.841 0.844 0.900 0.936 0.907 0.694 0.853 0.893 0.893 0.960 
0.556 0.945 0.863 0.920 0.920 0.900 0.810 0.913 0.906 0.867 0.761 0.916 0.927 0.927 0.915 
0.478 1.000 0.861 0.976 0.864 0.965 0.881 0.951 0.926 0.941 0.741 0.920 1.000 1.000 0.962 
0.449 0.937 0.852 0.864 0.835 0.844 0.830 0.924 0.874 0.919 0.709 0.857 0.895 0.895 0.911 
0.345 0.957 0.668 1.000 0.704 0.952 0.857 0.973 0.709 0.822 0.924 0.930 1.000 1.000 0.760 
0.365 0.879 0.606 0.921 0.676 0.876 0.895 0.892 0.747 0.765 0.875 0.866 0.951 0.951 0.791 
0.348 0.529 0.839 0.365 0.513 0.387 0.593 0.470 1.000 0.791 0.208 0.347 0.475 0.475 1.000 
0.199 0.507 0.721 0.345 0.401 0.364 0.521 0.460 0.704 0.752 0.196 0.320 0.444 0.444 0.751 
0.113 0.393 0.648 0.250 0.271 0.266 0.365 0.353 0.465 0.625 0.133 0.225 0.324 0.324 0.513 
0.255 0.589 0.941 0.405 0.504 0.427 0.579 0.531 0.828 0.876 0.231 0.381 0.506 0.506 0.873 
0.137 0.576 0.812 0.346 0.350 0.362 0.570 0.544 0.656 0.941 0.195 0.315 0.474 0.474 0.738 
0.348 0.514 0.909 0.366 0.543 0.384 0.514 0.460 0.874 0.746 0.217 0.358 0.445 0.445 0.873 
0.245 0.466 0.912 0.307 0.441 0.325 0.472 0.416 0.767 0.738 0.174 0.295 0.393 0.393 0.790 
0.217 0.493 0.878 0.312 0.420 0.330 0.524 0.448 0.788 0.803 0.177 0.298 0.419 0.419 0.829 

SI 
rank 

0.458 0.802 0.804 0.756 0.739 0.745 0.744 0.768 0.848 0.816 0.619 0.736 0.793 0.793 0.865 
1 19 20 14 11 13 12 15 27 22 5 10 18 17 28 

CE 
rank 

0.770 0.760 0.833 0.670 0.767 0.837 0.824 0.820 0.731 0.816 0.672 0.834 0.723 0.808 0.777 
13 15 3 20 14 1 5 6 17 7 19 2 18 8 11 

A-P 1.575 0.940 1.063 0.892 0.948 1.029 1.117 1.028 0.936 1.062 1.083 1.050 0.890 1.000 0.960 
rank 1 23 10 26 22 14 4 15 24 9 7 11 27 16 19 
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A.3 (Continued) (Car Selection Data) Results comparison of SI, A-P and cross-

efficiency scores 

DMU 16 17 18 19 20 21 22 23 24 25 26 27 28 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

0.900 0.646 0.785 0.829 0.717 0.466 0.604 0.255 0.578 0.394 0.659 0.482 0.281 
0.894 0.855 0.910 0.739 0.699 0.523 0.874 0.475 0.838 0.635 0.870 0.695 0.482 
1.000 0.904 0.959 0.757 0.738 0.619 0.945 0.518 0.936 0.675 1.000 0.795 0.547 
0.754 0.710 0.768 0.756 0.668 0.407 0.671 0.319 0.572 0.444 0.598 0.459 0.297 
0.927 0.795 0.885 0.725 0.663 0.538 0.822 0.430 0.842 0.591 0.913 0.714 0.476 
0.996 0.922 0.962 0.780 0.762 0.619 0.954 0.515 0.898 0.660 0.949 0.752 0.516 
0.995 0.816 0.941 0.903 0.966 0.543 0.697 0.364 0.684 0.638 0.774 0.617 0.429 
1.000 0.816 1.000 0.894 0.852 0.504 0.727 0.387 0.799 0.711 0.901 0.722 0.503 
0.900 0.705 0.821 0.744 0.756 0.501 0.639 0.329 0.658 0.549 0.754 0.593 0.400 
1.000 0.922 1.000 0.792 0.918 0.594 0.826 0.495 0.853 0.831 0.936 0.789 0.601 
0.731 0.560 0.714 0.869 0.644 0.311 0.507 0.195 0.466 0.316 0.511 0.367 0.204 
1.000 0.823 0.984 0.903 0.804 0.511 0.770 0.384 0.794 0.627 0.877 0.682 0.450 
0.848 0.772 0.861 0.784 0.747 0.461 0.713 0.369 0.676 0.570 0.723 0.573 0.393 
0.942 0.896 0.970 0.865 0.845 0.526 0.832 0.441 0.768 0.661 0.809 0.648 0.453 
0.952 0.857 0.927 0.749 0.835 0.571 0.789 0.456 0.799 0.724 0.879 0.725 0.534 
0.949 0.803 0.930 0.809 0.761 0.512 0.760 0.397 0.786 0.632 0.865 0.683 0.465 
0.973 1.000 1.000 0.806 0.895 0.609 0.947 0.551 0.850 0.769 0.880 0.731 0.545 
0.932 0.861 0.948 0.779 0.844 0.534 0.778 0.449 0.792 0.744 0.860 0.713 0.529 
0.848 0.922 1.000 1.000 0.966 0.443 0.767 0.418 0.662 0.707 0.671 0.556 0.412 
0.835 0.894 0.924 0.903 1.000 0.472 0.729 0.409 0.611 0.676 0.633 0.531 0.401 
0.690 0.816 0.543 0.235 0.607 1.000 1.000 1.000 0.936 0.758 1.000 1.000 0.959 
0.587 0.777 0.530 0.231 0.570 0.670 0.905 0.874 0.818 0.746 0.795 0.811 0.795 
0.420 0.617 0.412 0.164 0.416 0.457 0.778 0.820 0.737 0.622 0.640 0.677 0.690 
0.684 0.845 0.605 0.272 0.619 0.767 1.000 0.953 1.000 0.831 1.000 1.000 0.959 
0.615 0.922 0.632 0.244 0.678 0.621 1.000 1.000 0.936 1.000 0.838 0.913 0.959 
0.642 0.671 0.514 0.248 0.513 0.767 0.787 0.709 0.884 0.660 0.998 0.952 0.864 
0.578 0.669 0.475 0.203 0.492 0.726 0.817 0.821 0.917 0.683 0.976 0.982 0.948 
0.611 0.758 0.517 0.209 0.565 0.757 0.894 0.918 0.936 0.784 0.962 1.000 1.000 

SI 
rank 

0.829 0.806 0.804 0.650 0.734 0.572 0.805 0.545 0.787 0.666 0.831 0.720 0.575 
25 23 21 26 9 3 22 2 16 7 26 8 4 

CE 
rank 

0.785 0.827 0.771 0.787 0.755 0.615 0.520 0.404 0.609 0.564 0.561 0.531 0.556 
10 4 12 9 16 21 27 28 22 23 24 26 25 

A-P 
rank 

0.949 1.084 0.948 1.107 1.035 1.304 0.905 0.820 1.068 1.204 0.998 0.982 1.043 
20 6 21 5 13 2 25 28 8 3 17 18 12 
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A.4 (FMS Data) Random weight ratios are used (N = 20) 

N 6 7 8 9 10 11 12 

1 

2 
3 
4 
5 
6 
7 
8 

9 
10 
11 
12 

13 
14 
15 
16 

17 
18 
19 
20 

0.956 0.934 0.934 0.988 1.000 0.905 0.948 0.910 0.648 0.787 0.899 0.783 
1.000 0.975 0.821 0.895 0.928 0.561 0.635 0.782 0.255 0.587 0.879 0.721 
1.000 0.976 0.808 0.846 0.879 0.573 0.647 0.791 0.236 0.570 0.907 0.704 
0.988 0.960 0.839 0.985 1.000 0.587 0.656 0.795 0.345 0.657 0.832 0.743 
0.686 0.670 0.764 0.827 0.810 0.954 0.946 0.768 1.000 0.776 0.661 0.623 
0.909 0.881 0.946 0.955 1.000 0.931 0.976 0.877 0.595 0.765 0.867 0.780 
0.899 0.867 0.865 0.982 1.000 0.699 0.760 0.813 0.460 0.727 0.789 0.741 
0.948 0.930 0.855 0.986 1.000 0.638 0.699 0.793 0.373 0.651 0.817 0.751 
0.867 0.855 0.873 1.000 0.987 0.813 0.849 0.834 0.607 0.746 0.780 0.747 
0.809 0.769 0.871 0.954 1.000 0.731 0.793 0.777 0.464 0.736 0.721 0.729 
0.961 0.946 0.890 0.996 1.000 0.748 0.801 0.852 0.483 0.708 0.862 0.769 
0.874 0.839 0.919 0.992 1.000 0.953 0.989 0.904 0.808 0.880 0.818 0.757 
0.935 0.908 0.903 0.982 1.000 0.795 0.850 0.864 0.529 0.754 0.854 0.765 
0.895 0.865 0.917 0.973 1.000 0.863 0.913 0.867 0.603 0.785 0.832 0.763 
0.973 0.963 0.912 1.000 0.992 0.846 0.886 0.892 0.589 0.736 0.898 0.781 
1.000 0.985 0.763 0.933 0.956 0.443 0.510 0.691 0.211 0.522 0.786 0.703 
0.773 0.735 0.915 0.939 1.000 0.902 0.948 0.800 0.611 0.788 0.724 0.741 
0.918 0.892 0.876 0.987 1.000 0.727 0.784 0.831 0.480 0.728 0.816 0.752 
0.906 0.885 0.825 1.000 0.989 0.644 0.698 0.790 0.447 0.694 0.765 0.726 
0.844 0.833 0.886 0.974 1.000 0.766 0.812 0.780 0.457 0.664 0.761 0.756 

mean 
rank 

0.907 0.883 0.869 0.960 0.977 0.754 0.805 0.821 0.510 0.713 0.813 0.742 
3 4 5 2 1 9 8 6 12 11 7 10 

CE 
rank 

0.848 0.839 0.777 0.844 0.867 0.727 0.758 0.724 0.564 0.618 0.747 0.667 
2 4 5 3 1 8 6 9 12 11 7 10 

Equal 
rank 

0.907 0.883 0.888 0.986 1.000 0.769 0.822 0.839 0.515 0.738 0.817 0.757 
3 5 4 2 1 9 7 6 12 11 8 10 
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A.5 (Car Selection Data) Random weight ratios are used (N = 30) 

N 6 8 10 11 12 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

0.780 
0.641 
0.763 
0.897 
0.914 
0.720 
0.885 
0.828 
0.684 
0.639 
0.988 
0.858 
0.807 
0.705 
0.823 
0.874 
0.873 
0.623 
0.731 
0.644 
0.784 
0.725 
0.730 

0.715 
0.658 
0.772 
0.812 
0.769 

0.869 
0.688 

0.892 
0.876 
0.908 
0.865 
0.870 
0.860 

0.897 
0.845 
0.909 
0.864 
0.849 
0.895 
0.892 
0.804 
0.904 
0.880 

0.860 

0.870 
0.846 

0.729 

0.803 
0.876 
0.902 
0.871 
0.839 
0.922 
0.881 
0.729 
0.898 
0.880 

1.000 
1.000 
0.966 
1.000 
0.942 
0.947 
1.000 
0.940 
0.999 
0.966 
0.931 
0.982 
0.988 
0.890 
1.000 
0.951 
0.927 
0.928 
0.950 
0.748 
0.848 
1.000 
1.000 
1.000 
0.936 
0.987 
1.000 
0.758 
0.993 
0.953 

0.711 
0.625 
0.758 
0.719 
0.798 
0.686 
0.756 
0.716 
0.705 
0.651 
0.815 
0.776 
0.737 
0.657 
0.749 
0.786 
0.775 
0.685 
0.692 
0.661 
0.743 
0.666 
0.701 
0.654 
0.654 
0.756 
0.712 
0.716 
0.771 
0.691 

0.900 
0.880 
0.880 
0.933 
0.874 
0.849 
0.928 
0.855 
0.881 
0.841 
0.866 
0.894 
0.895 
0.792 
0.917 
0.875 
0.857 
0.813 
0.835 
0.683 
0.772 
0.901 
0.901 
0.897 
0.818 
0.902 
0.908 
0.700 
0.908 
0.853 

0.995 
0.977 
0.971 
0.989 
0.957 
0.945 
0.996 
0.943 
1.000 
0.963 
0.954 
0.993 
0.989 
0.893 
0.999 
0.963 

0.939 

0.937 
0.960 
0.764 
0.869 
0.984 
0.991 
0.981 
0.937 

0.987 

0.994 
0.781 
1.000 
0.950 

0.919 
0.786 
0.902 
0.855 
1.000 
0.906 
0.949 
0.982 
0.794 
0.825 
1.000 
0.962 
0.943 
0.931 
0.878 
1.000 
1.000 
0.794 
0.896 
0.853 
0.972 
0.767 
0.830 
0.787 
0.871 
0.903 
0.886 
0.940 
0.959 
0.876 

0.926 
0.833 
0.945 
0.875 
0.971 
0.916 
0.971 
0.948 
0.824 
0.832 
0.930 
0.942 
0.944 
0.896 
0.909 
0.981 
0.980 
0.815 
0.847 
0.854 
0.921 
0.812 
0.878 
0.828 

0.851 

0.960 
0.895 
0.879 

0.946 
0.915 

0.833 
0.738 
0.796 
0.824 
0.868 
0.801 
0.868 
0.861 
0.728 
0.743 
0.871 
0.851 
0.843 
0.802 
0.809 
0.865 
0.860 
0.699 
0.791 
0.693 
0.801 
0.736 
0.768 
0.751 
0.767 
0.807 
0.821 
0.753 
0.858 
0.776 

0.998 
0.946 
0.973 
0.839 
0.957 
1.000 
0.956 
1.000 
0.914 
0.971 
0.908 
0.977 
0.999 
1.000 
0.916 
0.990 
0.977 
0.930 
0.971 
0.879 
0.959 
0.852 
0.930 
0.887 
0.992 
0.981 
0.936 
0.876 
0.973 
0.999 

0.613 
0.483 
0.679 
0.708 
0.808 
0.579 
0.733 
0.660 
0.561 
0.487 
0.862 
0.720 
0.656 
0.547 
0.691 
0.765 
0.771 
0.525 
0.553 
0.619 
0.713 
0.572 
0.598 
0.551 
0.497 
0.678 
0.638 
0.750 
0.720 
0.572 

0.924 
0.830 
0.947 
0.936 
0.986 
0.892 
0.988 
0.931 
0.853 
0.822 
0.972 
0.959 
0.943 
0.855 
0.945 
0.981 
0.976 
0.819 
0.847 
0.813 
0.899 
0.854 
0.897 
0.854 
0.828 
0.961 
0.918 
0.856 
0.965 
0.892 

mean 
rank 

0.773 0.864 0.951 0.717 0.860 0.953 0.899 0.901 0.799 0.950 0.644 0.905 
18 12 3 19 13 2 8 7 16 4 20 5 

CE 
rank 

0.813 0.812 0.900 0.703 0.823 0.902 0.861 0.847 0.774 0.859 0.678 0.868 
12 13 2 19 10 1 5 7 16 6 20 4 

Equal 
rank 

0.816 0.901 0.998 0.727 0.905 1.000 0.933 0.936 0.839 0.986 0.613 0.946 
18 13 3 19 12 1 9 6 16 4 20 5 
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A.5 (Continued) Random weight ratios are used (N = 30) 

N 13 14 15 16 17 18 19 20 
1 0.809 0.914 0.942 0.898 0.996 0.919 0.825 0.822 
2 0.731 0.836 0.891 0.830 0.956 0.862 0.722 0.713 
3 0.839 0.951 0.910 0.903 1.000 0.920 0.951 0.891 
4 0.773 0.851 0.836 0.885 0.859 0.799 0.679 0.657 
5 0.859 0.956 0.910 0.920 0.966 0.906 0.930 0.908 
6 0.793 0.900 0.928 0.870 0.987 0.917 0.857 0.850 
7 0.837 0.929 0.918 0.935 0.951 0.901 0.826 0.799 
8 0.814 0.913 0.938 0.893 0.973 0.919 0.857 0.868 
9 0.771 0.887 0.869 0.837 0.991 0.854 0.807 0.779 

10 0.751 0.866 0.906 0.822 1.000 0.883 0.798 0.803 
11 0.847 0.938 0.880 0.901 0.937 0.864 0.881 0.878 
12 0.845 0.951 0.929 0.913 1.000 0.915 0.894 0.883 
13 0.828 0.933 0.941 0.908 1.000 0.926 0.866 0.857 
14 0.769 0.874 0.921 0.836 0.968 0.906 0.851 0.873 
15 0.814 0.913 0.883 0.900 0.949 0.868 0.812 0.776 
16 0.861 0.964 0.932 0.924 0.992 0.930 0.951 0.929 
17 0.852 0.951 0.918 0.914 0.970 0.919 0.948 0.924 
18 0.761 0.884 0.864 0.806 1.000 0.864 0.880 0.849 
19 0.775 0.886 0.915 0.835 1.000 0.885 0.818 0.847 
20 0.740 0.841 0.795 0.765 0.872 0.827 1.000 0.940 
21 0.816 0.921 0.885 0.848 0.960 0.896 1.000 0.988 
22 0.734 0.828 0.829 0.832 0.895 0.799 0.683 0.658 
23 0.783 0.888 0.884 0.871 0.961 0.870 0.792 0.759 
24 0.736 0.831 0.855 0.837 0.911 0.823 0.692 0.676 
25 0.759 0.872 0.920 0.824 1.000 0.897 0.823 0.843 
26 0.842 0.952 0.919 0.918 1.000 0.927 0.929 0.869 
27 0.791 0.888 0.900 0.886 0.948 0.870 0.767 0.759 
28 0.773 0.866 0.807 0.791 0.872 0.828 1.000 0.974 
29 0.842 0.945 0.929 0.919 0.990 0.911 0.868 0.856 
30 0.797 0.909 0.922 0.870 1.000 0.922 0.888 0.859 

mean 
rank 

0.798 0.901 0.896 0.870 0.964 0.884 0.853 0.836 
17 6 9 11 1 10 14 15 

CE 
rank 

0.757 0.846 0.824 0.820 0.877 0.796 0.794 0.768 
18 8 9 11 3 14 15 17 

Equal 
rank 

0.830 0.935 0.934 0.910 0.999 0.917 0.860 0.847 
17 7 8 11 2 10 14 15 
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A.6 (FMS Data) Comparison of C/R and W/B weight restrictions in 6 cases 

W/B weight restriction C/R weight restriction 

X(1) X(2) Y(1) Y(2) Y(3) Y(4) Vflv2 //1//I2 W//3 HlllMi l/j/l/4 //3///4 
Case 1 0.6 0.4 0.3 0.2 0.3 0.2 1.50 1.50 1.00 1.50 0.67 1.00 1.50 
Case 2 0.2 0.8 0.1 0.4 0.2 0.3 0.25 0.25 0.50 0.33 2.00 1.33 0.67 
Case 3 0.85 0.15 0.59 0.10 0.05 0.26 5.73 6.14 11.17 2.23 1.82 0.36 0.20 
Case 4 0.5 0.5 0.25 0.25 0.25 0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Case 5 0.95 0.05 0.85 0.05 0.05 0.05 19.00 17.00 17.00 17.00 1.00 1.00 1.00 
Case 6 0.95 0.05 0.45 0.05 0.05 0.45 19.00 9.00 9.00 1.00 1.00 0.11 0.11 

DMU C/R(1) rank W/B(1) rank C/R(2) rank W/B(2) rank C/R(3) rank W/B(3) rank 
1 0.907 4 0.926 3 0.929 3 0.981 4 0.941 4 0.998 2 
2 0.879 5 0.917 4 0.919 4 0.998 2 0.914 8 0.982 3 
3 0.908 3 0.876 5 0.803 5 0.776 5 0.916 7 0.943 7 
4 0.973 2 0.962 2 1.000 1 1.000 1 0.938 5 0.961 5 
5 1.000 1 1.000 1 0.990 2 0.983 3 0.950 3 0.981 4 
6 0.814 9 0.759 9 0.571 11 0.551 10 0.967 2 0.953 6 
7 0.868 6 0.814 6 0.626 9 0.603 9 1.000 1 1.000 1 
8 0.853 7 0.760 8 0.747 7 0.692 8 0.922 6 0.941 8 
9 0.535 12 0.046 12 0.361 12 0.035 12 0.775 11 0.230 12 

10 0.754 11 0.636 11 0.621 10 0.541 11 0.812 10 0.797 10 
11 0.834 8 0.782 7 0.756 6 0.740 6 0.908 9 0.928 9 
12 0.763 10 0.756 10 0.725 8 0.721 7 0.757 12 0.786 11 

DMU C/R(4) rank W/B(4) rank C/R(5) rank W/B(5) rank C/R(6) rank W/B(6) rank 
1 0.907 3 0.949 3 1.000 1 1.000 1 0.775 8 0.816 8 
2 0.883 5 0.948 4 0.961 3 0.964 3 0.761 9 0.823 7 
3 0.888 4 0.854 5 0.926 7 0.918 6 0.795 7 0.831 6 
4 0.986 2 0.980 2 0.895 9 0.884 8 0.829 4 0.901 3 
5 1.000 1 1.000 1 0.939 5 0.931 5 0.816 5 0.875 4 
6 0.769 9 0.723 10 0.897 8 0.874 9 0.982 2 0.989 2 
7 0.822 7 0.773 7 0.958 4 0.940 4 0.974 3 1.000 1 
8 0.839 6 0.753 8 0.930 6 0.917 7 0.814 6 0.847 5 
9 0.515 12 0.048 12 0.545 12 0.234 12 1.000 1 0.277 12 

10 0.738 11 0.624 11 0.771 10 0.745 11 0.753 11 0.769 9 
11 0.817 8 0.778 6 0.976 2 0.967 2 0.758 10 0.768 10 
12 0.757 10 0.751 9 0.761 11 0.757 10 0.653 12 0.696 11 
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A.7 (Car Selection Data) Comparison of C/R and W/B weight restrictions in 6 cases 

W/B weight restriction C/R weight restriction 
X(1) X(2) X(3) X(4) Y<1) Y(2) V-tlVi V1/V3 V1/V4 V2/V3 VilVi v-Jvi #/i/#i2 

Case 1 0.61 0.21 0.06 0.13 0.28 0.72 2.91 10.69 4.63 3.67 1.59 0.43 0.39 
Case 2 0.13 0.06 0.21 0.61 0.72 0.28 2.31 0.63 0.22 0.27 0.09 0.34 2.57 
Case 3 0.30 0.30 0.15 0.25 0.36 0.64 1.03 1.99 1.23 1.94 1.20 0.62 0.57 
Case 4 0.15 0.30 0.30 0.39 0.64 0.36 0.52 0.50 0.40 0.97 0.77 0.79 1.76 
Case 5 0.06 0.61 0.21 0.13 0.28 0.72 0.09 0.27 0.43 2.91 4.63 1.59 0.39 
Case 6 0.37 0.23 0.26 0.14 0.88 0.12 1.65 1.42 2.72 0.86 1.65 1.92 7.55 

DMU C/R(1) rank W/B(1) rank C/R(2) rank W/B(2) rank C/R(3) rank W/B(3) rank 

1 0.923 7 0.948 5 0.568 19 0.580 19 0.910 13 0.970 7 
2 0.808 18 0.828 19 0.865 9 0.870 8 0.896 14 0.897 16 
3 0.857 14 0.897 11 0.951 3 0.961 3 0.994 2 1.000 1 
4 0.799 20 0.796 20 0.597 18 0.604 18 0.780 19 0.792 19 
5 0.804 19 0.833 18 0.837 11 0.839 10 0.917 11 0.918 13 
6 0.880 10 0.909 9 0.923 5 0.930 4 1.000 1 1.000 1 
7 1.000 1 1.000 1 0.782 15 0.795 15 0.981 4 1.000 1 
8 0.945 4 0.948 6 0.874 8 0.875 7 0.967 7 0.974 5 
9 0.837 17 0.845 16 0.929 4 0.716 17 0.880 15 0.891 17 

10 0.897 9 0.901 10 1.000 1 1.000 1 0.971 6 0.963 8 
11 0.878 12 0.872 13 0.448 20 0.458 20 0.757 20 0.769 20 
12 0.959 3 0.956 3 0.825 13 0.818 13 0.988 3 0.985 4 

13 0.839 16 0.839 17 0.732 17 0.732 16 0.852 17 0.855 18 

14 0.929 6 0.931 7 0.842 10 0.844 9 0.949 8 0.953 10 

15 0.852 15 0.859 15 0.907 6 0.908 5 0.931 10 0.923 12 
16 0.878 11 0.883 12 0.828 12 0.824 12 0.934 9 0.930 11 
17 0.908 8 0.914 8 0.970 2 0.974 2 0.978 5 0.972 6 
18 0.860 13 0.865 14 0.907 7 0.907 6 0.912 12 0.910 14 

19 0.971 2 1.000 1 0.795 14 0.835 11 0.864 16 0.954 9 

20 0.940 5 0.951 4 0.761 16 0.797 14 0.851 18 0.908 15 
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A.7 (Continued) Comparison of C/R and W/B weight restrictions In 6 cases 

DMU C/R(4) rank W/B<4) rank cms) rank WZB(5) rank cms) rank W/B(6> rank 
1 0.721 18 0.796 17 1.000 1 1.000 1 0.687 19 0.751 18 
2 0.888 11 0.888 12 0.818 14 0.841 11 0.829 14 0.835 13 
3 1.000 1 1.000 1 0.976 2 1.000 1 0.895 10 0.917 7 
4 0.679 19 0.688 19 0.712 18 0.713 17 0.690 18 0.693 19 
5 0.892 8 0.889 11 0.905 5 0.916 4 0.792 15 0.807 15 
6 0.989 2 0.986 2 0.976 3 0.994 3 0.906 8 0.921 6 
7 0.871 13 0.899 8 0.895 6 0.868 7 0.911 6 0.939 5 
8 0.896 7 0.904 6 0.837 10 0.845 9 0.885 11 0.891 11 
9 0.798 14 0.814 16 0.860 7 0.834 14 0.775 17 0.795 16 

10 0.987 4 0.979 4 0.832 12 0.841 12 0.994 2 0.994 3 
11 0.559 20 0.580 20 0.721 17 0.698 18 0.565 20 0.601 20 
12 0.890 9 0.889 10 0.906 4 0.901 5 0.856 12 0.856 12 
13 0.783 17 0.786 18 0.754 16 0.759 16 0.787 16 0.787 17 
14 0.890 10 0.892 9 0.828 13 0.843 10 0.902 9 0.901 10 
15 0.929 5 0.921 5 0.836 11 0.836 13 0.913 5 0.915 8 
16 0.875 12 0.873 13 0.858 8 0.860 8 0.835 13 0.835 14 
17 0.988 3 0.983 3 0.849 9 0.868 6 1.000 1 1.000 1 
18 0.905 6 0.902 7 0.779 15 0.794 15 0.911 7 0.911 9 
19 0.795 15 0.848 14 0.641 20 0.690 19 0.920 4 1.000 1 
20 0.790 16 0.829 15 0.658 19 0.680 20 0.925 3 0.993 4 
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A.8 Results of each DMU's projection points and ratio of norms of each projection 

Let W be a finite-dimensional subspace of the inner product space V. 

Let { u,, U,, - -, u*} be an orthononnal basis for Wand let x be a vector in V. 

The projection of x onto W, denoted projw x is defined to be (5.2) [18] 

projw x = (x-u,)u,  + •••  +  (x u*)u* (5.2) 

{Calculation Procedure) 

Step 1. Find a set of basis vectors v and an orthononnal basis u for the weight vector W. 

Step 2. Find the projection point of each DMU according to the above equation (5.2). 

Step 3. Calculate the norms of each projection and find the efficiency score by the 

equation of property (5.1). 

Case : Two outputs have the same weights, i.e. nx = n2 

Step 1. (//,,//2 ) = (1,1 ), therefore (1,1) forms a basis v for W. 

= yj l2  + l2  = -y/T" 

y 
And orthonormal basis for FTis u = ;—- = 

' 1 1 ' 

< V 2 ' V 2 ,  t - t J 
Step 2. projwx = (x-u)u 

Ji Jï Jt. 
For DMU 1, x.u = (l,8) (^,^) = ^ + 4V2=4.5V2 

projw* = (x-u)u = 4.5V2 (—, —) = (4.5, 4.5) 

By applying the same procedure, we can get the projection point of each DMU. 

The results for each DMU are DMU 1 : (4.5,4.5), DMU 2 : (4.5,4.5), DMU 3 : (3.5, 
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3.5), DMU 4 : (4.0, 4.0), DMU 5 : (4.25, 4.25), DMU 6 : (4.0,4.0) 

Step 3. The norm of each projection vector II projw x II is 

projw * I, = V4.52 + 4.5- = 6.36396, || projw x||2 = ^4.5"+4.5" = 6.36396 

projw x j|3 = V3.52 +3.52 = 4.94975, || projw x ||4 = ^4.O2 +4.02 = 5.65685 

projw x ||$ = -J4.252 +4.252 = 6.0104, ||projw x||fi = ^4.O2 +4.02 = 5.65685 

Therefore the efficiency score of each DMU can be calculated by the suggested 

property and we can see that all DMU's efficiency scores are the same as its CCR 

efficiency score except DMU 3 ( Because DMU 3 takes the weight vector /i, = 2/j2  ) 

6 36395 494975 
DMU land DMU 2: =i, DMU 3: =0.7777 

6.36395 6.36395 

DMU 4: 5-65685 = 0.8888, DMU 5 : 6 01041 = 0.9444, 
6.36395 6.36395 

DMU 6: 5-65685 = 0.8888 
6.36395 

The above results are exactly the same when we solve the CCR model with added constraint 

Mi = Mi following the procedure given by (5.3). For the case of DMU 3, when we solve the 

CCR model with added constraint  / / ,  = ,  the efficiency score is  0.7777 with H\ -  M2=  

0.1111. But when we change the added constraint from //, = fi2 to fux = 2/^, the efficiency 

score will also change to be 1.00 with fX\= 0.1538, /u2 = 0.0769. 
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A.9 Comparison between C/R and W/B weight restriction 

The following Figure A-l shows the difference of C/R and W/B weight restriction more 

clearly in one-input, two-output case. There are 3 DMUs of A, B and C which produce two 

outputs (>>,, y2 ) like A(5,5), B(2, 7), C(7,2) using one input, and the decision maker's 

preference (importance) between two outputs is given to be equal. When we apply the C/R 

weight restriction = /i2 on the above preference, Every DMU located to the right side of 

bold line will dominate the DMU A. DMUs located under the bold line don't affect to the 

efficiency score of the DMUs located upper side of the bold line. 

On the other hand when we apply the W/B weight restriction ( a : /3 = 0.5 : 0.5 ) in (6.2), 

Every DMU located to the right side of dotted curve will dominate the DMU A. DMUs 

located under the dotted curve do affect to the efficiency score of the DMUs located upper 

side of the bold line. That is, DMU (1,40) takes the projection weight vector - 40 ji2 and 

its W/B efficiency score 0.2836 is measured compared with DMU C (7, 2). DMU (40,1) 

takes the projection weight vector jj2 = 40//, and its W/B efficiency score 0.2836 is 

measured compared with DMU B (2, 7). Therefore, if we have different DMUs (not DMU B 

and C) in the sample, W/B efficiency score will also become different. 

The followings are results of W/B efficiency score of each DMU compared with that of DMU A, 

where [ (y,, y2 ), W/B efficiency score], DMU A (W/B efficiency score) 

- [(1,40), 0.2836] dominates DMU A (0.2439), but (1, 39) doesn't 

- [(2, 17), 0.5528] dominates DMU A (0.5263), but (2, 16) doesn't 

- [(3,10), 0.7895] dominates DMU A (0.7692), but (3, 9) doesn't 

- [(4, 7), 0.9874] dominates DMU A (0.9091), but (4,6) doesn't 
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Each DMU's W/B efficiency score in this case shows the characteristics of W/B weight restrictions 

well. [(1,40), 0.2836] < [(2, 17), 0.5528] < [(3, 10), 0.7895] < [(4, 7), 0.9874] 

y 2 

W/B 

CO,2) C/R 

x 10 20 30 

Figure A.1 Comparison between C/R and W/B weight restriction 
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